Electronic structure, magnetic and optical properties of transition metal compounds

Philipp Gütlich

Institut für anorganische Chemie und Analytische Chemie Universität Mainz

1. Free atoms and ions

1.1 One electron systems (H-Atom) 1.1.1 Schrödinger equation

Consider: Relative movement between Electron and nucleus (without translational movement of atoms) $K = -\frac{e^2}{2}$

Attractive force:

Potential:

$$V = -\int K dr = -\frac{e^2}{r}$$

 $V(r) = -\frac{Ze^2}{2}$

For H-like systems: (Ze = Nuclear charge)

Time independent Schrödinger-Equation for H-Atom:

$$\hat{H}\psi(x, y, z) = E\psi(x, y, z)$$
$$-\frac{\hbar^2}{2\mu}\nabla^2\psi(x, y, z) - \frac{e^2}{r}\psi(x, y, z) = E\psi(x, y, z)$$
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
$$\mu = \frac{m_e \cdot m_N}{m_e + m_N} = \text{Reduced mass}$$

The Schrödinger equation for H-atom writes:

 $+ m_{N}$

$$\nabla^2 \psi(x, y, z) + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{r}\right) \psi(x, y, z) = 0$$

The movement of the electron in the central nuclear field of the nucleus, V(r), is also known as "atomic Kepler problem".

z, z)

Adjusted to the spherically shaped H-atom, the Schrödinger-equation becomes with spherical coordinates r, g, ϕ :

$$\nabla^2 \psi(r, \vartheta, \varphi) + \frac{2\mu}{\hbar^2} (E + \frac{e^2}{r}) \psi(r, \vartheta, \varphi) = 0$$

With the Laplace-Operator:

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{r^{2} \sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}}$$

(see textbooks. e.g. Pauling-Wilson, Atkins (Physical Chemistry)

Spherical coordinates: r, θ, φ Transformation to cartesian coordinates:

 $x = r \cdot \sin \vartheta \cos \varphi$ $y = r \cdot \sin \vartheta \sin \varphi$ $z = r \cdot \cos \vartheta$

<u>Radial part</u> R_{n.]}: "Laguerre Polynoms"

Contains the quantum numbers

n = 1, 2, 3,..... Main quantum number l = 0, 1, 2,..... Orbital momentum quantum number

n is dominating!

 $R_{n,l}$ determines the radial extension of the atomic orbitals

Angular part, spherical harmonics

$$Y_{l,m_l} = \theta_{l,m_l}(\mathcal{G}) \cdot \Phi_{m_l}(\varphi)$$

The "spherical harmonics" determine the chemischal properties (Position in Periodical System) and the physical properties (magnetism,, optical properties).

$$\theta_{l,m_l}(\varphi) : ,, \text{Legendre Polynoms}$$

$$\Phi_{m_l}(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im_l \varphi}$$

$$\begin{split} m_l &= 0, \pm 1, \pm 2, \dots, \\ &= -l, -(l\text{-}1), \dots, (l\text{-}1), l \end{split}$$

Magnetic orbital momentum quantum number

1.1.2 One electron wave functions

Solving the Schrödinger equation (differential equation) for the H-atom: (see Pauling-Wilson, Eyring-Walter-Kimball.) involves the socalled

"Separationsansatz"

$$\psi(r, \vartheta, \varphi) = R(r) \cdot \theta(\vartheta) \cdot \Phi(\varphi)$$

= general solution

Separation into three different linearly independent differential equations, each of which is a function of only one variable. The solutions of the Schrödinger equation for the Hatom are then of the type:

$$\psi_{n,l,m_l}(r,\mathcal{G},\varphi) = R_{n,l}(r) \cdot \theta_{l,m_l}(\mathcal{G}) \cdot \Phi_{m_l}(\varphi)$$

Spherical coordinates: r, θ, φ Transformation to cartesian coordinates:

 $x = r \cdot \sin \vartheta \cos \varphi$ $y = r \cdot \sin \vartheta \sin \varphi$ $z = r \cdot \cos \vartheta$

<u>Radial part</u> R_{n.]}: "Laguerre Polynoms"

Contains the quantum numbers

n = 1, 2, 3,..... Main quantum number l = 0, 1, 2,..... Orbital momentum quantum number

n is dominating!

 $R_{n,l}$ determines the radial extension of the atomic orbitals

Angular part, spherical harmonics

$$Y_{l,m_l} = \theta_{l,m_l}(\mathcal{G}) \cdot \Phi_{m_l}(\varphi)$$

The "spherical harmonics" determine the chemischal properties (Position in Periodical System) and the physical properties (magnetism,, optical properties).

$$\theta_{l,m_l}(\varphi) : ,, \text{Legendre Polynoms}$$

$$\Phi_{m_l}(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im_l \varphi}$$

$$\begin{split} m_l &= 0, \pm 1, \pm 2, \dots, \\ &= -l, -(l\text{-}1), \dots, (l\text{-}1), l \end{split}$$

Magnetic orbital momentum quantum number

Nomenclature for Electrons and Orbitals:

1 = 0: s-electrons, s-orbitals (,,sharp")
1 = 1: p-electrons, p-orbitals (,,principal")
1 = 2: d-electrons, d-orbitals (,,diffuse")
1 = 3: f-electrons, f-orbitals (,,fundamental")

The Y_{l,m_l} -functions with $m_l = 0$ are <u>real</u>, since $\Phi_{m_l}(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im_l \varphi} = \frac{1}{\sqrt{2\pi}}$ e.g. s-, p_z -, d_{z2} -orbitals

For $m_1 \neq 0$, the Y_{l,m_l} functions are comlex. By linear combination of the type $Y_{l,m_l} \pm Y_{l,-m_l}$

one obtains spherical harmonics which are real.

Spherical Harmonics for 1 = 0, 1, 2, 3, 4

		Tabelle B.1. Kugelflächenfunktionen für $l=0$,	1, 2, 3, 4.
ł	m_l	$Y_{l, m_l}(\theta, \phi)$	$Y_{l,m_l}(x,y,z)$
0	0	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{4\pi}}$
1	0	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{3}{2}} \cos \theta$	$\sqrt{\frac{3}{4\pi}} \frac{z}{r}$
	±1	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{3}{4}} \sin \theta e \pm i\phi$	$\mp \sqrt{\frac{3}{8\pi}} \frac{x \pm iy}{r}$
2	0	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{5}{8}} (2\cos^2\theta - \sin^2\theta)$	$\sqrt{\frac{5}{4\pi}} \sqrt{\frac{1}{4}} \frac{3z^2 - r^2}{r^2}$
	±1 .	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{15}{4}} \cos\theta \sin\theta \ e^{\pm i\phi}$	$\mp \sqrt{\frac{5}{4\pi}} \sqrt{\frac{3}{2}} \frac{z(x\pm iy)}{r^2}$
	±2	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{15}{16}} \sin^2 \theta \ e^{\pm i 2\phi}$	$\sqrt{\frac{5}{4\pi}} \sqrt{\frac{3}{8}} \frac{(x\pm iy)^2}{r^2}$

l	m_l	$Y_{l, m_l}(\theta, \phi)$	$Y_{l, m_l}(x, y, z)$
3	0	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{7}{8}} (2\cos^3\theta - 3\cos\theta\sin^2\theta)$	$\sqrt{\frac{7}{4\pi}} \sqrt{\frac{1}{4}} \frac{z(5z^2-3r^2)}{r^3}$
	± 1	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{21}{32}} (4\cos^2\theta\sin\theta - \sin^3\theta) e^{\pm i\phi}$	$\mp \sqrt{\frac{7}{4\pi}} \sqrt{\frac{3}{16}} (x \pm iy) \frac{(5z^2 - r^2)}{r^3}$
	± 2	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{105}{16}} \cos\theta \sin^2\theta \ e^{\pm i2\phi}$	$\sqrt{\frac{7}{4\pi}} \sqrt{\frac{15}{8}} \frac{z(x\pm iy)^2}{r^3}$
	± 3	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{35}{32}} \sin^3 \theta \ e^{\pm i 3\phi}$	$\mp \sqrt{\frac{7}{4\pi}} \sqrt{\frac{5}{16}} \frac{(x \pm iy)^3}{r^3}$
4	0	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{9}{128}} (35\cos^4\theta - 30\cos^2\theta + 3)$	$\sqrt{\frac{9}{4\pi}} \sqrt{\frac{1}{64}} \frac{(35 z^4 - 30 z^2 r^2 + 3 r^4)}{r^4}$
	± 1	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{45}{32}} \sin \theta \left(7 \cos^3 \theta - 3 \cos \theta\right) e^{\pm i\phi}$	$\mp \sqrt{\frac{9}{4\pi}} \sqrt{\frac{5}{16}} (x \pm iy) \frac{(7z^3 - 3zr^2)}{r^4}$
	± 2	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{45}{64}} \sin^2\theta (7\cos^2\theta - 1) e^{\pm i2\phi}$	$\sqrt{rac{9}{4\pi}} \sqrt{rac{5}{32}} \ (x \pm iy)^2 \ rac{(7 z^2 - r^2)}{r^4}$
	± 3	$\mp \sqrt{\frac{1}{2\pi}} \sqrt{\frac{315}{32}} \sin^3\theta \cos\theta \ e^{\pm i3\phi}$	$\mp \sqrt{rac{9}{4\pi}} \sqrt{rac{35}{16}} rac{z (x \pm i y)^3}{r^4}$
	±4	$\sqrt{\frac{1}{2\pi}} \sqrt{\frac{315}{256}} \sin^4 \theta \ e^{\pm i 4\phi}$	$\sqrt{rac{9}{4\pi}}\sqrt{rac{35}{128}}rac{(x\pm iy)^4}{r^4}$

Tabelle B.2. Reelle orthonormierte Linearkombinationen der Kugelflächen- funktionen $Y_{l,m_l}(\theta, \phi)$ für $l = 0, 1, 2$.					
l	Linearkombination	Bezeich- nung			
0	$\frac{1}{\sqrt{2\pi}} \sqrt{\frac{1}{2}}$	8			
	$\frac{1}{\sqrt{2\pi}} \sqrt{\frac{3}{2}} \cos \theta = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{3}{2}} \cdot \frac{1}{r} \cdot z$	p_z			
1	$\frac{1}{\sqrt[]{\pi}} \sqrt[]{\frac{3}{4}} \sin \theta \cos \phi = \frac{1}{\sqrt[]{\pi}} \sqrt[]{\frac{3}{4}} \cdot \frac{1}{r} \cdot x$	p_x			
	$\frac{1}{\sqrt[]{\pi}} \sqrt[]{\frac{3}{4}} \sin \theta \sin \phi = \frac{1}{\sqrt[]{\pi}} \sqrt[]{\frac{3}{4}} \cdot \frac{1}{r} \cdot y$	p_y			
	$\frac{1}{\sqrt{2\pi}} \sqrt{\frac{5}{8}} (2\cos^2\theta - \sin^2\theta) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{5}{8}} \frac{1}{r^2} (3z^2 - r^2)$	d_{z^2}			
2	$rac{1}{\sqrt{\pi}} \sqrt{rac{15}{4}} \cos heta \sin heta \cos \phi = rac{1}{\sqrt{\pi}} \sqrt{rac{15}{4}} rac{1}{r^2} \cdot xz$	d_{xz}			
	$\frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{4}} \cos \theta \sin \theta \sin \phi = \frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{4}} \cdot \frac{1}{r^2} \cdot yz$	d_{yz}			
	$\frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{16}} \sin^2 \theta \cos 2\phi = \frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{16}} \frac{1}{r^2} (x^2 - y^2)$	$d_{x^2-y^2}$			
	$\frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{16}} \sin^2 \theta \sin 2\phi = \frac{1}{\sqrt{\pi}} \sqrt{\frac{15}{4}} \frac{1}{r^2} \cdot xy$	d_{xy}			

Real normalized linear combinations of spherical harmonics for l = 0, 1, 2

Abb. B.3. Amplitudenfunktionen der Winkelanteile der reellen Linearkombinationen Gl. (I-16). Graphical repesentation of angular parts of real linear combinations of one-electron wave Functions. Example: p-Orbitals

$$I = 1, m_{I} = 1$$
: $Y_{1,1} = -\frac{\sqrt{3}}{2\sqrt{2\pi}}\sin\theta \cdot e^{i\varphi}$

1 = 1, m₁ = -1:
$$Y_{1,-1} = -\frac{\sqrt{3}}{2\sqrt{2\pi}}\sin\theta \cdot e^{-i\phi}$$

With $e^{\pm i\varphi} = \cos \varphi \pm i \sin \varphi$ (Euler) One obtains for $-Y_{1,1} + Y_{1,-1} = \frac{\sqrt{3}}{2\sqrt{2\pi}} \sin \theta (\cos \varphi + i \sin \varphi + \cos \varphi - i \sin \varphi)$ $=\frac{\sqrt{3}}{2\sqrt{2\pi}}\sin\theta\cdot 2\cos\varphi$ $=\frac{\sqrt{3}}{\sqrt{2\pi}}\sin\theta\cos\varphi$

With $x = r \sin \theta \cdot \cos \phi$: $-Y_{1,1} + Y_{1,-1} = \frac{\sqrt{3}}{\sqrt{2\pi}} \frac{1}{r} \cdot x$ (Not yet normalized) Normalization: Multiplication with $\sqrt{\frac{1}{2}}$! p_x -Orbital

1.1.3 Orbital angular momentum of oneelectron system

Electron fulfils two kinds of movements:

- a) Translational movement
 - \rightarrow Orbital angular momentum \vec{l}
- b) Rotation about own axis
 - \implies Spin angular momentum \vec{s}

a) Orbital moment

Classical view with respect to center O:

 $\vec{l} = \vec{r} \times \vec{p}$

Direction of \overline{l} : "Three finger rule" of right hand

Notice: A train moving in a straight line possesses non-zero orbital momentum with respect to a reference point (e.g. spectator).

Komponenten des Drehimpulses \vec{l} :

$$\vec{l} = \vec{l}_x + \vec{l}_y + \vec{l}_z$$
$$= l_x \vec{i} + l_y \vec{j} + l_z \vec{k}$$

Bedeutung: z.B.Anisotropie bei optischen Übergängen

Quadrat von \vec{l} :

 $\vec{l}^2 = l_x^2 + l_y^2 + l_z^2 \qquad \text{da} \quad \vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$ $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$

Betrag von $|\vec{l}|$: klassisch: $|\vec{l}| = |\vec{r}| \cdot |\vec{p}| \sin \alpha$ Determinantenschreibweise für $\vec{l} = \vec{r} \times \vec{p}$:

$$\vec{l} = \vec{r} \times \vec{p} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix} =$$

$$= \vec{i} (yp_z - zp_y) - \vec{j} (xp_z - zp_x) + \vec{k} (xp_y - yp_x) + \vec{j} (zp_x - xp_z)$$

Damit lauten die Komponenten:

$$l_{x} = yp_{z} - zp_{y}$$

$$l_{y} = zp_{x} - xp_{z}$$

$$l_{z} = xp_{y} - yp_{x}$$
zyklisches
System!
$$l_{z} = xp_{y} - yp_{x}$$

Drehimpulsoperatoren

Dem klassischen Drehimpuls \overline{l} und seinen Komponenten $\overline{l}_x, \overline{l}_y, \overline{l}_z$ sind in der Quantenmechanik Operatoren zugeordnet.

Allgemein: Impulsoperator in q-Richtung $\vec{p} \rightarrow \hat{p} = -i\hbar \frac{\partial}{\partial q}$

Damit:

$$\hat{l}_{x} = -i\hbar(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y})$$
$$\hat{l}_{y} = -i\hbar(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z})$$
$$\hat{l}_{z} = -i\hbar(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})$$

Ebenso ist:

$$\hat{l}^{2} = \hat{l}_{x}^{2} + \hat{l}_{y}^{2} + \hat{l}_{z}^{2}$$

Wichtige Vertauschungsrelationen:

$$\underbrace{\left[\hat{l}_{x},\hat{l}_{y}\right]}_{\text{Commutator}} = \hat{l}_{x}\hat{l}_{y} - \hat{l}_{y}\hat{l}_{x} = i\hbar\hat{l}_{z}$$

Analog für das zyklische System:

$$\begin{bmatrix} \hat{l}_y, \hat{l}_z \end{bmatrix} = \hat{l}_y \hat{l}_z - \hat{l}_z \hat{l}_y = i\hbar \hat{l}_x \\ \begin{bmatrix} \hat{l}_z, \hat{l}_x \end{bmatrix} = \hat{l}_z \hat{l}_x - \hat{l}_x \hat{l}_z = i\hbar \hat{l}_y$$

D.h. die Operatoren der Komponenten von \vec{l} kommutieren nicht

Aber:
$$[\hat{l}^2, \hat{l}_k] = \hat{l}^2 \hat{l}_k - \hat{l}_k \hat{l}^2 = 0$$
 k = x, y, z

1. Folgerung aus den Vertauschungsrelationen: Da $\begin{bmatrix} \hat{l}^2, \hat{l}_k \end{bmatrix} = 0$, sind die Werte (Observablen) von \hat{l}^2 und \hat{l}_k (k = x, y, z) gleichzeitig scharf messbar, d.h. es gelten die Eigenwertgleichungen

$$\hat{l}^{2}Y_{l,m_{l}}(\vartheta,\varphi) = l(l+1)\hbar^{2}Y_{l,m_{l}}(\vartheta,\varphi)$$

$$l = 0, 1, 2, ...$$
und für die Quantisierungsachse z:

$$\hat{l}_{z}Y_{l,m_{l}}(\vartheta,\varphi) = m_{l}\hbar Y_{l,m_{l}}(\vartheta,\varphi)$$

$$m_{l} = 0, \pm 1, \pm 2, ...$$

Herleitung: P.W. Atkins

"Molecular Quantum Mechanics", Second Ed., Oxford University Press Oxford, New York, 1983 Die Operatoren \hat{l}^2 , \hat{l}_k wirken nicht auf die Radialanteile R_{n,1} der Gesamtwellenfunktion $\Psi_{n,l,m_l}(r, \theta, \varphi)$

Deshalb gilt auch:

$$\hat{l}^{2}\psi_{n,l,m_{l}}(r,\mathcal{G},\varphi) = l(l+1)\hbar^{2}\psi_{n,l,m_{l}}(r,\mathcal{G},\varphi)$$
$$\hat{l}_{z}\psi_{n,l,m_{l}}(r,\mathcal{G},\varphi) = m_{l}\hbar\psi_{n,l,m_{l}}(r,\mathcal{G},\varphi)$$

Eigenwerte:

d

zum Operator \hat{l}^2 : $l(l+1)\hbar^2$

h. Betrag
$$\left| \vec{l} \right| = \sqrt{l(l+1)} \hbar$$

zum Operator
$$\hat{l}_z$$
: $m_l \hbar$ d.h.Betrag \bar{l}_z $= m_l \hbar$

Merke:

Vom Vektor \vec{l} in der klassischen Mechanik (mit Betrag u. Richtung!) können in der Quantenmechanik nur noch Länge (Betrag) und die Projektion auf die Quantisierungsachse angegeben werden (nicht mehr die Richtung!)

2. Folgerung aus den Vertauschungsrelationen

Wenn $\begin{bmatrix} \hat{l}^2, \hat{l}_z \end{bmatrix} = 0$, dann können zwar \overline{l}^2 und \overline{l}_z gleichzeitig scharf gemessen werden, aber nicht \overline{l}_x und \overline{l}_y , da ihre Operatoren \hat{l}_x und \hat{l}_y nicht mit \hat{l}_z kommutieren.

Der um die z-Achse präzedierende \overline{l} -Vektor hat zu jeder Zeit die scharfe Projektion $|\overline{l}_z| = m_l \hbar$,

aber ständig sich ändernde Komponenten \vec{l}_x und \vec{l}_y .

Im Mittel sind die Erwartungswerte

$$\langle l_x \rangle = \langle l_y \rangle = 0$$

$$\langle l_x \rangle = \langle l, m_l | \hat{l}_x | l, m_l' \rangle = 0$$

$$\langle l_y \rangle = \langle l, m_l | \hat{l}_y | l, m_l' \rangle = 0$$
Für $m_l = m_l$

D.h.: Die Y_{l,m_l} sind gleichzeitig Eigenfunktionen zu \hat{l}^2 und \hat{l}_z , aber nicht zu \hat{l}_x und \hat{l}_y .

$$\hat{l}_{x}Y_{l,m_{l}}(\vartheta,\varphi) \neq m_{l}\hbar Y_{l,m_{l}}(\vartheta,\varphi)$$
$$\hat{l}_{y}Y_{l,m_{l}}(\vartheta,\varphi) \neq m_{l}\hbar Y_{l,m_{l}}(\vartheta,\varphi)$$

Erwartungswert in Dirac-Schreibweise:

$$\left\langle F\right\rangle = \int \psi^{*} \hat{F} \psi \ d\tau = \left\langle \psi \right| \ \hat{F} \left|\psi\right\rangle$$

Für hermitische Operatoren \hat{F} gilt:

$$\int \psi_m^* \hat{F} \psi_n d\tau = \int (\hat{F} \psi_m)^* \psi_n d\tau =$$
$$= \int (\psi_n^* \hat{F} \psi_m)^* d\tau$$
$$(\psi_n^{**} = \psi_n!)$$

In Dirac-Schreibweise:

$$\langle m \mid \hat{F} \mid n \rangle = \langle n \mid \hat{F} \mid m \rangle^{*}$$

$$denn \langle m \mid = \mid m \rangle^{*}$$

$$und \mid n \rangle = \langle n \mid^{*}$$

Für $m_l \neq m_l'$ können Werte für $\langle l_x \rangle$ und $\langle l_y \rangle$ mit Hilfe der Schiebeoperatoren berechnet werden:

$$\hat{l}_{\pm} = \hat{l}_{x} \pm \hat{l}_{y}$$
, "Leiteroperatoren",
"Raising/lowering Operators"

Durch Umformung:

$$\hat{l}_{x} = \frac{1}{2}(\hat{l}_{+} + \hat{l}_{-})$$
$$\hat{l}_{y} = \frac{1}{2i}(\hat{l}_{+} - \hat{l}_{-})$$

Wirkung der Schiebeoperatoren auf Y_{l,m_l} :

$$\hat{l}_{\pm}Y_{l,m_{l}} = \hbar\sqrt{l(l+1) - m_{l}(m_{l}\pm 1)} Y_{l,m_{l}\pm 1}$$

Dirac-Schreibweise: $Y_{l,m_l} = |l,m_l\rangle$!

Beispiel:

$$\hat{l}_{+}Y_{2,1} = \hat{l}_{+}|2,1\rangle = \hbar\sqrt{2(2+1) - 1(1+1)} = 2\hbar|2,2\rangle$$
$$\hat{l}_{+}|2,2\rangle = \hbar\sqrt{6-6}|2,3\rangle = 0$$
$$\hat{l}_{-}|2,-1\rangle = \hbar\sqrt{6-2}|2,-2\rangle$$
$$\hat{l}_{-}|2,-2\rangle = \hbar\sqrt{6-6}|2,-3\rangle = 0$$

"Leiteroperatoren"

b) Eigendrehimpuls: Spin

Erweiterung der Gesamtwellenfunktion um die Spinfunktion

$$\psi_{ges.} = \psi(r, \vartheta, \varphi) \cdot \chi(\sigma) = \psi_{n, l, m_l, m_s}(r, \vartheta, \varphi, \sigma)$$

Ortsfunktion Spinfunktion

Formal existieren 4 Spinfunktionen:

$$\chi(\sigma) = \alpha(\sigma) = 1 \quad \text{für} \quad \sigma = +\frac{1}{2} \qquad (\alpha \text{-Spin})$$
$$\alpha(\sigma) = 0 \quad \text{für} \quad \sigma = -\frac{1}{2}$$
$$\beta(\sigma) = 1 \quad \text{für} \quad \sigma = -\frac{1}{2} \qquad (\beta \text{-Spin})$$
$$\beta(\sigma) = 0 \quad \text{für} \quad \sigma = +\frac{1}{2}$$

Analog zum Bahndrehimpuls \overline{l} gilt:

$$\vec{s} = \vec{s}_x + \vec{s}_y + \vec{s}_z$$
 etc.

Analoge Vertauschungsrelationen führen zu den Eigenwertgleichungen:

 $\hat{s}^{2} | \chi(\sigma) \rangle = s(s+1)\hbar^{2} | \chi(\sigma) \rangle$ Spin-QZ $s = \frac{1}{2}$ mit dem Eigenwert $s(s+1)\hbar^2 = \frac{3}{4}\hbar^2$ zum Operator \hat{s}^2 Betrag: $|\vec{s}| = \frac{1}{2}\sqrt{3}\hbar$

 $\hat{s}_{z} | \chi(\sigma) \rangle = m_{s} \hbar | \chi(\sigma) \rangle$ Magnetische Spin-QZ $m_{s} = \pm \frac{1}{2}$ Mit dem Eigenwert $m_s \hbar = \pm \frac{1}{2} \hbar$ zum Operator \hat{s}_z .

Die Spin-Funktionen $\chi(\sigma)_{\text{sind}}$ Eigenfunktionen zu \hat{s}^2 und \hat{s}_z , aber nicht zu $\hat{s}, \hat{s}_x, \hat{s}_y$.

1.1.3 Magnetisches Moment

Bewegte Ladung \longrightarrow Magnetfeld, magnetisches Dipolmoment (μ)

Bahndrehimpuls $\vec{l} \rightarrow \vec{\mu}_l \uparrow \downarrow \vec{l}$

magnetisches Bahnmoment

$$\bar{\mu}_l \mid = -\frac{e\hbar}{2mc}\sqrt{l(l+1)}$$

 $\mu_B = \frac{e\hbar}{2mc}$ = Bohrsches Magneton $= 0.927*10^{-20} \text{ erg/G}$ (SI) Gyromagnetisches Verhältnis:

$$\frac{Magnetisches\ Moment\ }{Bahndrehimpuls\ } \frac{\left|\vec{\mu}_{l}\right|}{\left|\vec{l}\right|} = \gamma$$

$$\gamma = -\frac{e}{2m}$$
 für Bahndrehimpuls

 $\gamma = -g \frac{e}{2m}$ für alle Drehimpulse

z.B. Elektronenspin
$$\vec{s}$$
: $\gamma = -\frac{e}{m}$ $(g_s = 2)$

Damit ist:

$$\left| \mu_{s} \right| = -g_{s}\mu_{B}\sqrt{s(s+1)}$$
 Magnetisches Spinmoment

1.1.4 Zeeman-Effekt

ist die Aufspaltung eines entarteten Energieniveaus im Magnetfeld.

Wechselwirkungsenergie allgemein ist:

$$E_{mag} = -\vec{\mu} \ \vec{H} = -\left|\mu\right| \left|\vec{H}\right| \cdot \cos(\vec{\mu}, \vec{H})$$

$$E_{mag} = -\bar{\mu} \ \bar{H} = -\mu \cdot H \cdot \cos \vartheta$$

Mit magnet. Bahnmoment $\vec{\mu}_l$: $E = -\mu_l H \frac{\left| \vec{l}_z \right|}{\left| \vec{l} \right|} = \frac{\mu_B \left| \vec{l} \right| \cdot H}{\hbar} \frac{m_l \hbar}{\left| \vec{l} \right|}$

 $\overline{E(m_l)} = \mu_B H m_l$

Im Magnetfeld erfolgt Aufspaltung eines (21+1)-fach entarteten Energieniveaus in 21+1 nicht mehr bahnentartete Niveaus.

Beispiel: d-Elektron (l = 2)

Zeeman-Effekt für Elektronenspin:

Aufspaltung des (2s+1)-fach entarteten Energieniveaus im Magnetfeld:

 $E_{mag}(m_s) = g_s \mu_B H m_s$ (+ E_0) $g_s = 2,00232$

"Anomalie des Elektronenspins"

Grundlage für: Elektronenspinresonanz-(ESR)-Spektroskopie Elektronenparamagnetische Resonanz-(EPR)-Spektroskopie
Elektronenspinresonanz-(ESR)-Spektroskopie

Elektronenparamagnetische Resonanz-(EPR)-Spektroskopie

 $\Delta E = g_{s} \mu_{B} H = h \nu$

Prinzip: Konstantes Magnetfeld zur Erzeugung der Aufspaltung, v konstant (z.B. 30 GHz), mit H variabel Resonanz bei H_r aufsuchen. Mit obiger Beziehung lässt sich der g-Faktor bestimmen:

 $g = \frac{hv}{\mu_B H_r}$ Information: Valenzzustand, lokale Symmetrie, Anisotropie

1.1.5 Spin-Bahn-Kopplung $(\overline{l} \cdot \overline{s})$

Vektormodell: \vec{j} \vec{J} \vec{J} \vec{I} und \vec{S} Ebenso und \vec{n} Z

Die Vektoren \vec{l} und \vec{s} präzedieren um den resultierenden Vektor \vec{j} vom Betrag $|\vec{j}| = \sqrt{j(j+1)} \hbar$ mit j = l + s, |l - s|= "Gesamtdrehimpuls-QZ"

 \vec{l} und \vec{s} ,,koppeln" zum Gesamtdrehimpuls \vec{j} . Ebenso koppeln die magnetischen Momente $\vec{\mu}_l$ und $\vec{\mu}_s$ zum Gesamtmoment $\vec{\mu}_j$ mit Betrag $\left|\vec{\mu}_j\right| = -g_j \mu_B \sqrt{j(j+1)},$ wobei $g_j = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$ Beispiel: p-Elektron

 $l = 1, s = 1/2 \longrightarrow j = 3/2, 1/2$

für j = 3/2

für j = 1/2

Für Einelektronensysteme allgemein:

1	j	L	Termsymbol ^{2S+1} L _J
0	1/ ₂	0	${}^{2}S_{1/2}$
1	¹ / ₂ , ³ / ₂	1	${}^{2}\mathrm{P}_{1/2}, {}^{2}\mathrm{P}_{3/2}$
2	³ / ₂ , ⁵ / ₂	2	$^{2}D_{3/2}, ^{2}D_{5/2}$
3	⁵ / ₂ , ⁷ / ₂	3	${}^{2}\mathrm{F}_{5/2}, {}^{2}\mathrm{F}_{7/2}$

L = 0 :	S-Term	L = 4 :	G-Term
L = 1 :	P-Term	L = 5 :	H-Term
L = 2:	D-Term		usw
L = 3:	F-Term		

Feinstruktur in der Atomspektroskopie (Atomabsorptions-, Röntgenfluoreszenzspektroskopie) Quantenmechanische Behandlung: Hamiltonian für S.B-Kopplung

$$\hat{H}_{SB} = \zeta_{nl} \,\hat{l}\hat{s}$$
$$= \zeta_{nl} (\hat{l}_x \hat{s}_x + \hat{l}_y \hat{s}_y + \hat{l}_z \hat{s}_z)$$

Für ein Elektron im Zustand $|nlsj\rangle$

$$E(nlsj) = \langle nlsj | \zeta_{nl} \hat{l} \hat{s} | nlsj \rangle$$

Problem: Der Operator $\hat{l}_{.\hat{s}}$ kommutiert nicht mit dem Gesamt-Hamiltonian \hat{H} im Gegensatz zu \hat{l}^2, \hat{l}_z und \hat{s}^2, \hat{s}_z . Es gibt also keine Funktion, die gleichzeitig Eigenfunktion zu \hat{H} und $\hat{l}_{.\hat{s}}$ ist. Wohl aber kommutieren \hat{j}^2 und \hat{j}_z mit \hat{H} , und $|nlsj\rangle$ ist gleichzeitig Eigenfunktion zu $\hat{l}^2, \hat{l}_z, \hat{s}^2, \hat{s}_z, \hat{j}^2, \hat{j}_z$ und \hat{H} . Es muss ein Operator für S.B.-Kopplung gefunden werden, zu dem $|nlsj\rangle$ Eigenfunktion ist.

Durch Umformung:
$$\vec{j} = \vec{l} + \vec{s}$$

 $\vec{j}^2 = (\vec{l} + \vec{s})^2 = \vec{l}^2 + \vec{s}^2 + 2\vec{l}\vec{s}$
 $= l^2 + s^2 + 2\vec{l}\vec{s}$

$$\hat{l}\hat{s} = \frac{1}{2}(\hat{j}^2 - \hat{l}^2 - \hat{s}^2)$$

Damit lauten die Energieeigenwerte:

$$E(nlsj) = \langle nlsj | \frac{1}{2} \zeta_{nl} (\hat{j}^2 - \hat{l}^2 - \hat{s}^2) | nlsj \rangle$$

= $\frac{1}{2} \zeta_{nl} \hbar^2 [j(j+1) - l(l+1) - s(s+1)]$

Beispiel: 2p-Elektron: Zustände ²P_{1/2}, ²P_{3/2}

$$E({}^{2}P_{1/2}) = E(2, 1, \frac{1}{2}, \frac{1}{2}) = -\zeta_{2,1}\hbar^{2}$$
$$E({}^{2}P_{3/2}) = E(2, 1, \frac{1}{2}, \frac{3}{2}) = +\frac{1}{2}\zeta_{2,1}\hbar^{2}$$

Spin-Bahn-Kopplungkonstante:

$$\zeta_{n,l} = \frac{(\frac{Ze^2}{8\pi\varepsilon_0 m_e^2 c^2})(\frac{Z}{a_0})^3}{n^3 l(l+\frac{1}{2})(l+1)hc}$$

Also: $\zeta_{nl} \sim \mathbb{Z}^4$

1.2 Mehrelektronensysteme

1.2.1 Schrödinger-Gleichung und Zustandsfunktionen

Bei Vernachlässigung jeglicher Elektronenkopplungen und Kernbewegung lautet die zeitunabhängige Schrödinger-Gleichung für ein freies Atom mit Ordnungszahl Z und N Elektronen (Masse m, Ladung e):

$$\left[-\frac{\hbar^{2}}{2m}\sum_{i=1}^{N}\nabla_{i}^{2}-\sum_{i=1}^{N}\frac{Ze^{2}}{r_{i}}+\sum_{i=1}^{N}\sum_{j=1}^{N}\frac{e^{2}}{r_{ij}}\right]\Psi_{0}=E_{0}\Psi_{0}$$

kinetische Anziehung Abstoßung Energie der Kern- Elektron-Elektronen Elektronen Elektron Gesamtwellenfunktion

$$\Psi = \Psi(\vec{r}_1, \sigma_1; \vec{r}_2, \sigma_2; ...; \vec{r}_N, \sigma_N)$$

mit $\vec{r}_i = (\vec{r}_1, \vartheta_i, \varphi_i)$

 Ψ_0 ist das Produkt von Einelektronenfunktionen, z.B.

$$\Psi_0 = \psi_{a_1}(1) \cdot \psi_{a_2}(2) \dots \psi_{a_N}(N)$$

wobei $a_i \equiv n_i, l_i, m_{l_i}, m_{s_i}$
 $(i) \equiv (\vec{r}_i, \sigma_i)$

 Ψ_0 ist **Eigenfunktion** zum **Eigenwert**

$$E_0 = \varepsilon_{n_1, l_1} + \varepsilon_{n_2, l_2} + \dots \quad \varepsilon_{n_N, l_N}$$

Dem entspricht der Gesamt-Hamiltonian \hat{H}_0 als Summe von Einelektronenoperatoren $\hat{H}_0 = \sum_{i=1}^N \hat{h}_i^o$ für ein **ungestörtes System** Die Nichtunterscheidbarkeit von Elektronen verlangt, dass alle N! möglichen Produktfunktionen, die durch Permutation (Paarvertauschungen) aus Ψ_0 hervorgehen, Eigenfunktionen zu \hat{H}_0 sind.

z.B.
$$\Psi_0' = \psi_{a_1}(2) \psi_{a_2}(1) \dots \psi_{a_N}(N)$$

Paarvertauschung

Ebenso ist jede beliebige Linearkombination der N! Produktfunktionen Eigenfunktion zum Operator \hat{H}_0 mit Energie-Eigenwert E_{0.}

Aber: physikalisch sinnvoll sind nur Linearkombinationen von der Form:

$$\Phi = \frac{1}{\sqrt{N!}} \sum_{p} (-1)^{p} \hat{P} \Psi_{0} \qquad \begin{array}{c} \frac{1}{\sqrt{N!}} : \text{Normierungsfaktor} \\ \hat{P} : \text{Permutationsoperator} \\ (-1)^{p} : \text{Phasenfaktor} (\rightarrow \text{Vorzeichen}) \end{array}$$

p : Permutationsindex

Beispiel: Zweielektronensystem

$$\Phi = \frac{1}{\sqrt{2}} (\psi_{a_1}(1) \cdot \psi_{a_2}(2) - \psi_{a_1}(2) \cdot \psi_{a_2}(1))$$

 Φ = Heisenberg-Slater-Funktion

= antimetrische Funktion

(wechseln das Vorzeichen bei Koordinatenvertauschung zweier Elektronen)

HS-Funktion als Determinante:

$$\Phi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{a_1}(1) & \psi_{a_2}(1) & \dots & \psi_{a_N}(1) \\ \psi_{a_1}(2) & \psi_{a_2}(2) & \dots & \psi_{a_N}(2) \\ \vdots & \vdots & & \vdots \\ \psi_{a_1}(N) & \psi_{a_2}(N) & \dots & \psi_{a_N}(N) \end{vmatrix}$$

abgekürzt:
$$\Phi = \Phi(a_1; a_2; \dots; a_N)$$

 $a_i = n_i, l_i, m_{l_i}, m_{s_i}$

Innerhalb einer Unterschale *l* genügt:

$$\Phi = \Phi(m_{l_1}, m_{s_1}; m_{l_2}, m_{s_2}; \dots; m_{l_N}, m_{s_N})$$

Beispiel: p-Konfiguration (15 Funktionen)

"Mikrozustand"

$$\begin{array}{c|c} +1 & 0 & -1 \\ \hline & \uparrow & \hline & \\ \hline & \uparrow & \hline & \\ \end{array} \longrightarrow \Phi = (\stackrel{+}{1}; \stackrel{+}{0})$$

ausgeschrieben:

$$\Phi = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_{a_1}(1) & \psi_{a_2}(1) \\ \psi_{a_1}(2) & \psi_{a_2}(2) \end{vmatrix}$$
$$= \frac{1}{\sqrt{2}} (\psi_{a_1}(1)\psi_{a_2}(2) - \psi_{a_1}(2)\psi_{a_2}(1))$$

Falls beide Elektronen im selben Einelektronenzustand $a_1 = a_2$: $\Phi = 0$

"Pauli-Verbot"

1.2.2 Gesamtbahndrehimpuls

Atom mit N Elektronen:

$$\vec{L} = \vec{l}_1 + \vec{l}_2 + \dots + \vec{l}_N$$
$$\vec{L}^2 = (\vec{L}_x + \vec{L}_y + \vec{L}_z)(\vec{L}_x + \vec{L}_y + \vec{L}_z) = L^2_x + L^2_y + L^2_z$$

Zugeordnete Operatoren:

$$\hat{L} = \hat{L}_{x} + \hat{L}_{y} + \hat{L}_{z}$$
$$\hat{L}^{2} = \hat{L}_{x}^{2} + \hat{L}_{y}^{2} + \hat{L}_{z}^{2}$$

Es gelten analoge Vertauschungsrelationen wie im Einelektronensystem.

Betrag von $\left| \vec{L} \right| = \sqrt{L(L+1)} \hbar$ mit $L = \sum_{i=1}^{N} l_i = 0,1,2,...$ bzw. wegen Pauli-Prinzip: $\sum m_l = M_L \triangleq L$

L: Gesamtbahndrehimpuls-QZ

Projektion von \vec{L} auf \vec{H} -Achse

$$\left| \vec{L}_{z} \right| = M_{L}\hbar$$

 $M_{L} = \sum_{i=1}^{N} m_{l_{i}} = +L, (L-1), \dots - L$

"magnetische Gesamtbahndrehimpuls-QZ"

<u>Gesamtspin</u>

 $\overrightarrow{S} = \overrightarrow{s_1} + \overrightarrow{s_2} + \dots + \overrightarrow{s_N}$ $\overrightarrow{S}^2 = S_x^2 + S_y^2 + S_z^2$ Betrag $|\overrightarrow{S}| = \sqrt{S(S+1)}\hbar$ mit $S = \sum_i s_i = 0, \frac{1}{2}, 1, \dots$ bzw. wegen Pauli-Prinzip $\sum_i m_{s_i} = M_s \stackrel{?}{=} S$

"Gesamtspin-QZ"

Komponente von \vec{S} auf \vec{H} -Achse:

$$\left|\vec{S}_{z}\right| = M_{s}\hbar \text{ mit } M_{s} = \sum_{i} m_{s_{i}} = +S, S-1, \dots - S$$
 "Magnetische Gesamtspin-QZ"

Merke:

 $\Psi(L, M_L, S, M_S)$ sind Eigenfunktionen zu $\hat{L}^2, \hat{L}_z, \hat{S}^2, \hat{S}_z$ $\Phi(m_{l_1}, m_{s_1}; m_{l_2}, m_{s_2}; ...)$ sind Eigenfunktionen zu \hat{L}_z und \hat{S}_z , im allgemeinen aber nicht zu \hat{L}^2 und \hat{S}^2 .

$$\begin{split} \hat{L}^{2}\Psi(L,M_{L},S,M_{S}) &= L(L+1)\hbar^{2}\Psi(L,M_{L},S,M_{S}); & L = 0,1,2...\\ \hat{L}_{z}\Psi(L,M_{L},S,M_{S}) &= M_{L}\hbar\Psi(L,M_{L},S,M_{S}); & M_{L} = +L...-L\\ \hat{S}^{2}\Psi(L,M_{L},S,M_{S}) &= S(S+1)\hbar^{2}\Psi(L,M_{L},S,M_{S}); & S = 0,\frac{1}{2},1...\\ \hat{S}_{z}\Psi(L,M_{L},S,M_{S}) &= M_{S}\hbar\Psi(L,M_{L},S,M_{S}); & M_{S} = +S,...,-S \end{split}$$

Tabelle B.3. Φ -Funktionen der d^2 -Konfiguration.

	1. 1	0	-1
4		$arPhi(2^+;2^-)$	
3	$\Phi(2^+;1^+)$	$\Phi(2^+;1^-), \Phi(2^-;1^+)$	$\Phi(2^-;1^-)$
2	$arPhi\left(2^+;0^+ ight)$	$arPhi(2^+;0^-), arPhi(2^-;0^+), \ arPhi(1^+;1^-)$	${\it \Phi}\left(2^{-};0^{-} ight)$
1	$\left(2^+;-1^+ ight),\ \left(1^+;0^+ ight)$		$\Phi \left(2^{-};-1^{-} ight) ,\ \Phi \left(1^{-};0^{-} ight)$
0	$\Phi\left(2^{+};-2^{+} ight),\ \Phi\left(1^{+};-1^{+} ight)$	$egin{aligned} & \varPhi(2^+;-2^-),\varPhi(2^-;-2^+),\ & \varPhi(1^+;-1^-),\varPhi(1^-;-1^+),\ & \varPhi(0^+;0^-) \end{aligned}$	$\Phi(2^-; -2^-), \ \Phi(1^-; -1^-)$
1	$\Phi(1^+; -2^+), \ \Phi(0^+; -1^+)$	$egin{aligned} & \varPhi(1^+;-2^-), \varPhi(1^-;-2^+), \ & \varPhi(0^+;-1^-), \varPhi(0^-;-1^+) \end{aligned}$	$arPhi(1^-;-2^-)$, $arPhi(0^-;-1^-)$
-2	${\it \Phi}(0^+;-2^+)$	$egin{aligned} & \varPhi(0^+;-2^-),\varPhi(0^-;-2^+), \ & \varPhi(-1^+;-1^-) \end{aligned}$	$\Phi\left(0^{-};-2^{-} ight)$
-3	$\Phi(-1^+;-2^+)$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\Phi(-1^-; -2^-)$
-4		$\Phi(-2^+; -2^-)$	

1.2.3 Drehimpulskopplungen in Mehrelektronensystemen

Zwei Arten:

- a) Russell-Saunders-Kopplung
- **b**) \overline{jj} -Kopplung

(bei leichten Elementen)(bei schweren Elementen)

a) Russell-Saunders-Kopplung

Die RS-Kopplung ist die Form der Elektronen-Kopplung, die bei leichten Atomen mit kleinen Ladungszahlen Z (z.B. bei Kohlenstoff) vorherrscht. Mit steigender Ladungszahl Z geht sie in \overline{j} \overline{j} -Kopplung über (z.B. bei Blei). Dazwischen liegen häufig Mischformen vor.

Bei der Russell-Saunders-Kopplung ist die elektrostatische Wechselwirkung aller Elektronen groß im Vergleich zur Spin-Bahn-Wechselwirkung einzelner Elektronen. Die Spin-Bahn-Kopplung jedes Elektrons wird aufgebrochen. Stattdessen koppeln die einzelnen Bahndrehimpulse a) Russell-Saunders-Kopplung

Schema:

$$\left. \begin{array}{c} l_i \cdot l_k \to L \\ \vec{s}_i \cdot \vec{s}_k \to \vec{S} \end{array} \right\} \quad \vec{L} + \vec{S} \to \vec{J}$$

 $\left| \vec{L} \right| = \sqrt{L(L+1)} \cdot \hbar$ $\left| \vec{S} \right| = \sqrt{S(S+1)} \cdot \hbar$ L = 0,1,2,... S = 0, $\frac{1}{2}$,1, $\frac{3}{2}$,2,...

Gesamtdrehimpuls $\left| \vec{J} \right| = \sqrt{J(J+1)} \cdot \hbar$ $J = L + S, L + S - 1, ..., \left| L - S \right|$ J: Gesamtdrehimpuls-Quantenzahl Relative Kopplungsstärken:

$$\vec{l_i} \cdot \vec{l_k} \approx \vec{s_i} \cdot \vec{s_k} \ge \vec{l_i} \cdot \vec{s_i}$$

Bei leichten Elementen der Fall,
 ~Ende 3*d*-Reihe

b) $\overline{j} \overline{j}$ -Kopplung

Schema:

$$\vec{l}_i \cdot \vec{s}_i \to \vec{j}_i$$
$$\vec{l}_k \cdot \vec{s}_k \to \vec{j}_k$$

Gesamtdrehimpuls der Einzelelektronen:

$$\begin{aligned} \left| \overline{j}_{i} \right| &= \sqrt{j_{i}(j_{i}+1)} \cdot \hbar \\ j_{i} &= l_{i} + s_{i}, l_{i} + s_{i} - 1, \dots, \left| l_{i} - s_{i} \right| \\ \left| \overline{j}_{k} \right| &= \sqrt{j_{k}(j_{k}+1)} \cdot \hbar \\ j_{k} &= l_{k} + s_{k}, l_{k} + s_{k} - 1, \dots, \left| l_{k} - s_{k} \right| \end{aligned}$$

Gesamtdrehimpuls \overline{J}

 $\begin{vmatrix} \vec{J} \end{vmatrix} = \sqrt{J(J+1)} \cdot \hbar$ $J = j_i + j_k, j_i + j_k - 1, \dots, \begin{vmatrix} j_i - j_k \end{vmatrix}$

Termsymbole ^{2S+1}L

L	Term	Bahnentartung 2L+1	S	Spinentartung 2S+1	Bezeichnung
0	S	1	0	1	Spin-Singulett
1	Р	3	$\frac{1}{2}$	2	Spin-Dublett
2	D	5	1	3	Spin-Triplett
3	F	7	$\frac{3}{2}$	4	Spin-Quartett
4	G	9	2	5	Spin-Quintett
5	Н	11	<u>5</u> 2	6	Spin-Sextett
•	•	•	•		

1.2.4 Russell-Saunders-Term ^{2S+1}L von Grundzuständen

Hundsche Regeln:

- I. Unter mehreren ${}^{2S+1}L_J$ -Termen eines Atoms (Ions) ist der mit maximalem Spin (S) am stabilsten.
- II. Unter mehreren ${}^{2S+1}L_j$ -Termen mit gleichem Spin ist der mit maximalem Bahndrehimpuls am stabilsten.
- III. Im J-Multiplett ist
 - a) der Term mit minimalem J am stabilsten, wenn die Unterschale weniger als halb besetzt ist.
 - b) der Term mit maximalem J am stabilsten, wenn die Unterschale <u>mehr als halb besetzt ist</u>.

Bedingungen für den Grundzustand:

$$\sum_{i} m_{s_{i}} = M_{S} \equiv S \text{ maximal}$$
$$\sum_{i}^{i} m_{l_{i}} = M_{L} \equiv L \text{ maximal}$$

 $\mathbf{V}^{2S+1}L$

Allgemein ist die Anzahl der Mikrozustände (Gesamtentartung) für eine Unterschale *l* besetzt mit N Elektronen

 $\frac{(4l+2)!}{N!(4l+2-N)!}$

O – Atom mit
$$1s^2 2s^2$$

Gesamtentartung: $\frac{6!}{4!2!} = \begin{pmatrix} 6\\ 2 \end{pmatrix} = 15$

$$\mathbf{m}_{l} = +1 \quad \mathbf{0} \quad -1$$

$$L \stackrel{\triangle}{=} M_{L} = \sum_{i} m_{i} = 1$$

$$S \stackrel{\triangle}{=} M_{S} = \sum_{i}^{i} m_{s_{i}} = 1$$

$$J = L + S = 2 \xrightarrow{3} P_{2}$$

Vergleich C-Atom mit O-Atom: Beide haben ${}^{3}P$ - Grundterm wegen:

"Elektron-Elektronenloch-Äquivalenz"

Aber:

Gemäß der III.Hund'schen Regel

Landésche Intervall-Regel

Im *J*-Multiplett ist der Energieabstand zum nächst höheren *J*-Niveau proportional zu dessen J-Quantenzahl.

Gesamtentartung:

$$\frac{10!}{6!4!} = \binom{10}{4} = \frac{7 \cdot 8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3 \cdot 4} = 210$$

$$m_1 = \begin{array}{c} +2 +1 & 0 & -1 +2 \\ \uparrow \downarrow \uparrow & \uparrow & \uparrow \\ \uparrow \end{array}$$

$$L \stackrel{c}{=} M_{L} = \sum_{i} m_{l_{i}} = 2$$

$$S \stackrel{c}{=} M_{S} = \sum_{i} m_{s_{i}} = 2$$

$$J = L + S = 4$$

$$J = L + S = 4$$

Russell-Saunders-Term des Grundzustands für die Valenzelektronenkonfigurationen d⁰ bis d¹⁰ (Übergangsmetalle)

Konfiguration	e ⁻ Anordnung, mikrozustand	M _{L(Max)}	M _{S(max)}	Grundzustand
d ⁰		0	0	¹ S ₀
d ¹	+	2	$\frac{1}{2}$	² D _{3/2}
d ²	++-	3	1	${}^{3}F_{2}$
d ³	+++	3	$\frac{3}{2}$	⁴ F _{3/2}
d ⁴	+++++++++++++	2	2	${}^{5}D_{0}$
d ⁵	++++++	0	$\frac{5}{2}$	⁶ S _{5/2}
d ⁶	#++++	2	2	${}^{5}D_{4}$
d ⁷	₩₩+++++++++++++	3	$\frac{3}{2}$	${}^{4}F_{9/2}$
d ⁸		3	1	${}^{3}F_{4}$
d ⁹	#####	2	$\frac{1}{2}$	${}^{2}D_{5/2}$
d ¹⁰	₩ ₩ ₩ ₩ ₩	0	0	${}^{1}S_{0}$

1.2.5 Russell-Saunders-Terme ^{2S+1}L von angeregten Zuständen

Aufsuchen aller Russell-Saunders-Terme (Grundzustand und angeregte Zustände) eines Atoms (Ions) mit

M_LM_S-Tafel: "Liste der Mikrozustände"

Beispiel C-Atom: Valenzelektronenkonfigutration p² Gemäß $\frac{(4l+2)!}{N!(4l+2-N)!} = \frac{6!}{2!\cdot 4!} = 15$ Mikrozustände

Mögliche M_L-Werte: +2,+1,0,-1,-2 Mögliche M_S-Werte: +1,0,-1

M_LM_S-Tafel

Pauli-Verbot!

$$\begin{pmatrix} + & + \\ 1, 0 \end{pmatrix} = \Phi \begin{pmatrix} + & + \\ 1, 0 \end{pmatrix} \text{ ist eine Heisenberg-Slater-Determinante}$$
$$\Phi = \frac{1}{\sqrt{2}} \det \{ m_{l_1}, m_{s_1}; m_{l_2}, m_{s_2} \}$$
$$\text{mit } m_{l_1} = 1, m_{l_2} = 0 \implies M_L \triangleq L = 1$$
$$m_{s_1} = \frac{1}{2}, m_{s_2} = \frac{1}{2} \implies M_S \triangleq S = 1$$
und gehört zum ³P-Zustand

Der ³P-Zustand ist 9-fach <u>entartet</u>:

 $(2L+1)\cdot(2S+1)=3\cdot 3=9$

Es muss also 9 Mikrozustände zu ³P geben.

Zu ³P gehören die M_LM_S-Kombinationen:

Nach Herausstreichen dieser 9 Mikrozustände verbleiben in der M_LM_S-Tafel:

	1	0	-1
+2		$\begin{pmatrix} + & -\\ 1, 1 \end{pmatrix}$	
+1	$\begin{pmatrix} + & + \\ 1, 0 \end{pmatrix}$	$\begin{pmatrix} + & -\\ 1, 0 \end{pmatrix}$ oder $\begin{pmatrix} - & +\\ 1, 0 \end{pmatrix}$	$\begin{pmatrix} - & -\\ 1, 0 \end{pmatrix}$
0		$\begin{pmatrix} + & -\\ 1, -1 \end{pmatrix}$ oder $\begin{pmatrix} - & +\\ 1, -1 \end{pmatrix}$, $\begin{pmatrix} + & -\\ 0, 0 \end{pmatrix}$	$\begin{pmatrix} - & -\\ 1, -1 \end{pmatrix}$
-1	$\begin{pmatrix} {}^+ & {}^+ \\ -1, 0 \end{pmatrix}$	$\begin{pmatrix} + & - \\ -1, 0 \end{pmatrix}$ oder $\begin{pmatrix} - & + \\ -1, 0 \end{pmatrix}$	$\begin{pmatrix} - & - \\ -1, 0 \end{pmatrix}$
-2		$\begin{pmatrix} + & -\\ -1, -1 \end{pmatrix}$	

Der höchststehende Mikrozustand ist $\begin{pmatrix} + & -\\ 1, 1 \end{pmatrix}$ mit $M_L = 2$ $M_S = 0$ $\longrightarrow 1$ D

Der ¹D-Term ist $(2L+1) \cdot (2S+1) = 5$ fach entartet.

Die zugehörigen Mikrozustände haben die Kombinationen

Nach Herausstreichen dieser 5 Mikrozustände bleibt übrig:

$$\begin{pmatrix} + & -\\ 0, 0 \end{pmatrix} \quad \text{mit} \quad M_L \stackrel{c}{=} L = 0 \\ M_S \stackrel{c}{=} S = 0 \end{pmatrix} \longrightarrow {}^1S$$

Ergebnis für C-Atom

Die p²-Elektronenkonfiguration ist 15-fach entartet und spaltet durch Elektron-Elektron-Wechselwirkungen auf in die Terme:

$^{3}P, ^{1}D, ^{1}S$

Der Grundzustand ist: ³P bzw. ³ P_0
Beispiel:

	ि । 1	0	-1					
· 4		$arPhi\left(2^+;2^- ight)$						
3	$\varPhi\left(2^{+};1^{+} ight)$	$\varPhi\left(2^{+};1^{-} ight), \varPhi\left(2^{-};1^{+} ight)$	$\Phi(2^-; 1^-)$					
2	$arPhi\left(2^{+};0^{+} ight)$	$arPhi\left(2^{+};0^{-} ight),arPhi\left(2^{-};0^{+} ight),\ arPhi\left(1^{+};1^{-} ight)$	$arPhi(2^-; 0^-)$					
1	$\left(2^+;-1^+ ight),\ \left(1^+;0^+ ight)$	$\Phi(2^+; -1^-), \Phi(2^-; -1^+) \ \Phi(1^+; 0^-), \Phi(1^-; 0^+)$						
0	$\Phi (2^+; -2^+), \ \Phi (1^+; -1^+)$	$egin{aligned} & \varPhi(2^+;-2^-),\varPhi(2^-;-2^+),\ & \varPhi(1^+;-1^-),\varPhi(1^-;-1^+),\ & \varPhi(0^+;0^-) \end{aligned}$	$\Phi(2^-;-2^-),\ \Phi(1^-;-1^-)$					
-1	$\Phi(1^+;-2^+),\ \Phi(0^+;-1^+)$							
-2	$arPhi(0^+;-2^+)$	$\Phi \left(0^+;-2^- ight) , \Phi \left(0^-;-2^+ ight) , \ \Phi \left(-1^+;-1^- ight)$	$\Phi(0^-; -2^-)$					
-3	$\Phi\left(-1^{+};-2^{+} ight)$	$\Phi(-1^+;-2^-),\ \Phi(-1^-;-2^+)$	$\Phi(-1^-; -2^-)$					
-4		$\Phi(-2^+; -2^-)$						

Ergebnis:

Die d²-Konfiguration ist 45-fach entartet, besitzt also 45 Mikrozustände und entsprechende Heisenberg-Slater-Funktionen und spaltet durch interelektronische Wechselwirkungen auf in die Terme: ³F, ³P, ¹G, ¹D, ¹S Grundzustand ist gemäß der Hundschen Regeln: ³F

Tabelle B.5 Die zu den Konfigurationen d^N gehörenden Terme*

Konfigu- ration	Terme				
d^{1}, d^{9}	^{2}D				
70 70	3F 3P				
d^{2}, d^{8}	1G 1D 1S				
	4F 4P				
d3, d7	$^{2}H \ ^{2}G \ ^{2}F \ a \ ^{2}D \ b \ ^{2}D \ ^{2}P$				
	5 <i>D</i>				
d^4 , d^6	³ H ³ G a ³ F b ³ F ³ D a ³ P b ³ P				
	¹ I a ¹ G b ¹ G ¹ F a ¹ D b ¹ D a ¹ S b ¹ S				
d^5	⁶ S				
	$^{4}G \ ^{4}F \ ^{4}D \ ^{4}P$				
	${}^{2}I {}^{2}H a {}^{2}G b {}^{2}G a {}^{2}F b {}^{2}F a {}^{2}D b {}^{2}D c {}^{2}D {}^{2}P {}^{2}S$				

1.2.6. Energieniveauschemata freier Atome (Ionen)

Beispiel C-Atom: p²

2. Komplexionen - Konzepte der Ligandenfeldtheorie

Die Ligandenfeldtheorie (LFT) ist eine Elektronentheorie speziell für Übergangsmetallkomplexe (ÜM-Komplexe). Sie wurde von *Hartmann* und *Ilse* (Frankfurt, 1946) auf der Grundlage der Kristallfeldrechnungen von *Bethe* und *van Vleck* (~1930) entwickelt.

Vorstellung:

Elektrostatische Wechselwirkung zwischen Zentralion (ZI) und Liganden (L) mit besonderer Berücksichtigung des ZI-Elektronensystems unter dem Einfluß des elektrischen Feldes der als Punktladungen bzw. Punktdipole gedachten Liganden (1.Näherung).

Erweiterung:

Zusätzliche Berücksichtigung der Elektronenstruktur der Liganden (Theorie der Molekülzustände).

Als Ligandenfeld bezeichnet man das von den nächsten Nachbarn am Ort des ÜM-Ions erzeugte elektrische Feld.

2.1 Schrödinger-Gleichung

Koordinierung von Liganden ans Übergangsmetall-Ion bewirkt:

- Ligandenfeld = elektrisches Feld am Ort des Zentralions
- Störung der d-Valenzelektronen
- > Aufspaltung bzw. Verschiebung von Energieniveaus des freien Ions

"Innerkomplexer Stark-Effekt"

Hamilton-Operator für N Elektronen im Ligandenfeld:

Die d-Elektronen (i) eines ÜM-Ions mit der Elektronenkonfiguration d^N (N=Gesamtanzahl) und den Koordinaten $i = r_i, \mathcal{G}_i, \varphi_i$ "spüren" im Abstand R_k von den n Liganden L_k mit Koordinaten R_k, Θ_k, Φ_k das Potential:

$$\sum_{i=1}^{N} V(\bar{r}_{i}) = \sum_{i=1}^{N} \sum_{k=1}^{n} V_{L_{k}}^{(i)} = \sum_{i=1}^{N} \sum_{k=1}^{n} \frac{z_{L_{k}}}{r_{ik}}$$

N:Zahl der Elektronen

n: Zahl der Liganden mit Ladungszahl $z_{L_{h}}$

Folge: Aufhebung der 5-fachen Bahnentartung der d-Zustände

Aufspaltung in Terme von niedrigerem Entartungsgrad

Die Ligandenfeldtheorie erklärt bei Übergangsmetallkomplexen:

- Lichtabsorptionseigenschaften
- Feinheiten im magnetischen Verhalten (Bahnmomentbeitrag, Spin-Bahn-Kopplung, Temperaturabhängiger Paramagnetismus, TIP)
- Rückbindungseffekte
- Thermodynamische Stabilität (LFSE)
- Reaktionskinetisches Verhalten

Energieeffekte bei der Bildung eines ÜM-Komplexions

Anziehende Wechselwirkungen zwischen Atomrumpf u. Liganden

Entscheidender Beitrag zur Stabilität des Komplexions. Infolge abstoßender Wechselwirkungen zwischen d-Elektronen und Liganden wird das System energetisch angehoben.

Elektrostatische Wechselwirkungen zwischen Liganden und d-Elektronen

Aufspaltung der entarteten d-Orbitalniveaus (Einelektronenzustände im Einelektronenschema) bzw. der Russell-Saunders-Terme in Folgeterm = Spaltterme (im Mehrelektronenschema)

Die Rasse (Symmetrie) der aufgespalteten Einelektronenzustände (z.B. a_{1g} , e_g , t_{2u} etc.) bzw. Folgeterme (A_{1g} , E_g , T_{2u} etc.) erhält man mit Hilfe der **<u>Gruppentheorie</u>**.

Die relativen Energielagen der aufgespaltenen Einelektronenzustände bzw. Folgeterme werden mit Hilfe **<u>quantenmechanischer Methoden</u>** (Störungstheorie) berechnet.

Störungsrechnung entarteter Systeme

Zu berechnen ist die Determinante vom Typ $\left\| \left\langle \Phi_r \left| \hat{H}_1 \right| \Phi_s \right\rangle - \Delta E \cdot \delta_{rs} \right\| = 0$ $r, s = 1, 2, ..., \eta \text{ Entartun gsgrad}$ $\Delta E_k (k = 1, 2, ..., \eta) = \text{Wurzeln}$ = Störenergien $\delta_{rs} = \text{Kronecker} - \text{Symbol}$ = 1 für r = s

= 0 für $r \neq s$

Ausgang: $\hat{H}_0 \Phi = E_0 \Phi$ "ungestörtes System"

Störoperator gesamt:

 $\hat{H}_1 = 3 + 4 + 5$

Je nach der Stärke der Teilstörung unterscheidet man:

a) Fall des schwachen Ligandenfelds

vorwiegend bei Komplexen der 3d-Reihe

b) Fall des starken Ligandenfelds

LF 4 > EW 3 > SB 5

vorwiegend bei 4d-, 5d-Komplexen

c) Fall starker Spin-Bahn-Kopplung

SB (5) > LF (4), EW (3)

vorwiegend bei 4f-, 5f-Verbindungen

2.2 Komplexionen im schwachen Ligandenfeld

Störungsschema:

Wirkung des Ligandenfelds auf ^{2S+1}L-Terme:

$$^{2S+1}L \rightarrow ^{2S+1}\Gamma$$

- 2. <u>Anzahl der Folgeterme (Spaltterme) Γ abhängig von</u>
 - Bahndrehimpuls L
 - Symmetrie Beides wird mit Hilfe der <u>Gruppentheorie</u> ermittelt.
- 3. <u>Aufspaltungsenergie</u> mit Hilfe von quantenmechanischer Störungsrechnung.

Abhängig von: a) Abstand Zentralion-Ligand b) Ladung am Zentralion

c) Ladung/Dipolmoment des Liganden

2.2.1 Termaufspaltung im kubischen Ligandenfeld

<u>kubisch</u>: Oktaeder, Würfel (O_h) , Tetraeder (T_d)

Vorgehen:

- > Transformationseigenschaften für Basen l = 0, 1, 2, 3, ... feststellen
- Charaktere der Transformations-Matrizen bestimmen
- Reduzible Darstellung aufstellen
- Mit Reduktionsformel Zerfall in irreduzible Darstellungen ermitteln.

Zusta	nd	Bahn-	Spaltterme im kubischen Ligandenfeld							
des freier Ions	n 3	ent- artungs- grad	Anzahl	MUI	Bezeic liken [30]	hnung BETHE [25]	Bahn- entartungs- grad			
S(L=	0)	1	1	A1		1 A_1 Γ_1		1		
P(L =	=1)	3	1	T_1		Γ_{4}	3			
D(L =	2)	5	2	E, T_2		Γ_3, Γ_5	2, 3			
F(L =	3)	7	3	A_2, T_1, T_2		$\Gamma_2, \Gamma_4, \Gamma_5$	1, 3, 3			
G(L =	4)	9	4	A_1, E, T_1, T_2		$\Gamma_1,\Gamma_3,\Gamma_4,\Gamma_5$	1, 2, 3, 3			
Termbezeichnungen für kubische Symmetrie:										
A_1	A	$_2 \mid E$	$ T_1 $	T_2	2 MULLIKEN [30]					
Γ_1	Γ	$_2$ Γ_3	Γ_4 .	$\overline{\Gamma}_{5}$	Г ₅ Ветне[25]					
1	1	2	3	3	3 Bahnentartung = Dimension der ent- sprechenden irreduziblen Darstellung					
(1) 1 T										

Tabelle A.1. Aufspaltung im kubischen Feld (Symmetrie O_h bzw. T_d)

(Für Einelektronenzustände werden kleine Buchstaben verwendet, z.B. γ_3 oder e, γ_5 oder t_2).

Abb. A.18. Termaufspaltung der Grundzustände der Ionen Ti³⁺ bis Cu²⁺ im oktaedrischen Ligandenfeld (schematisch).

2.2.2 Termaufspaltung im nichtkubischen Ligandenfeld

Symmetrieerniedrigung, z.B.

Die Darstellung für O_h -Symmetrie wird bei Symmetrieerniedrigung reduzibel. Durch Anwendung der Reduktionsfomel zerfällt die Darstellung für O_h in irreduzible Darstellungen für D_{4h} :

$$\xrightarrow{2S+1} \Gamma \xrightarrow{Symmetrieerniedrigung} \xrightarrow{2S+1} \Gamma' \div \xrightarrow{2S+1} \Gamma'' \div \dots$$

duzible Darstellung irreduzible Darstellungen

Tabelle B.13. Korrelationsschemata.

a) für Untergruppen von O_h

b) für Untergruppen von D_{4h}

Oh	T_{d}	$D_{4\hbar}$	D_3	D_{4h}	C_{4v}	C_{2v}
A_{1g}	A_1	A_{1g}	A_1	A_{1g}	A_1	A_1
$A_{1 u}$	A_2	A_{1u}	A_1	A_{1u}	A_2	A_2
A_{2g}	A_2	B_{1g}	A_2	A_{2g}	A_2	B_1
A_{2u}	A_1	B_{1u}	A_2	A_{2u}	A_1	B_2
E_{g}	E	$A_{1g} \dotplus B_{1g}$	E	B_{1g}	B_1	A_1
Eu	E	$A_{1u} \dot{+} B_{1u}$	E	B_{1u}	B_2	A_2
T_{1g}	T_1	$A_{2g} \dotplus E_g$	$A_2 \dot{+} E$	B_{2g}	B_2	B_1
T _{1 u}	T_{2}	$A_{2u} \dot{+} E_u$	$A_2 \dot{+} E$	B_{2u}	B_1	B_2
T_{2g}	T_2	$B_{2g} \dotplus E_g$	$A_1 \dot{+} E$	E_{g}	E	$A_2\dot{+}B_2$
$T_{2 u}$	T_1	$B_{2u} \dot{+} E_u$	$A_1 \dot{+} E$	Eu	E	$A_1 \dot{+} B_1$

Die gezeigten Übergänge (Pfeile) liegen energetisch im sichtbaren Bereich des optischen Spektrums (400-800nm). Alle sind spinerlaubt, aber paritätsverboten.

2.2.3 Termwechselwirkung und Termüberschneidung

Folgeterme (Spaltterme) mit gleicher Spinmultiplizität und gleicher Rasse (irreduzible Darstellung) stoßen sich ab:

"Termwechselwirkung"

Beispiel für Term-Wechselwirkung: Cr³⁺-Komplexe mit O_h-Symmetrie

Abb. A. 29. Termsystem des Cr³⁺ bei oktaedrischer Symmetrie des Ligandenfeldes unter Berücksichtigung der Quartett-Terme (schematisch).

freies <u>he</u> mit Ion Termwechselwirkung Ion im Ligandenfeld der Symmetrie O_h Folgeterme verschiedener Rasse (u. Spinmultiplizität) können bei hinreichend großen Ligandenfeldstärken überschneiden:

Spin-Crossover (Spin-Übergang)

Bedingung: kritische Ligandenfeldstärke \approx Spinpaarungsenergie

Mit $\Delta G = \Delta H - T \Delta S$

$$\Delta \mathbf{G} = \mathbf{G}_{\mathrm{HS}} - \mathbf{G}_{\mathrm{LS}} \approx k_{\mathrm{B}} \mathbf{T}$$

G = Gibbs-Funktion (freie Enthalpie) $k_B = Boltzmann$ -Konstante HS = High SpinLS = Low Spin Beispiel für Termüberschneidung (Spin-Crossover):

d⁶-Komplexe

Abb. A. 37. Termsystem oktaedrischer Cobalt (III)- bzw. Eisen (II)-Komplexe (vereinfacht, schematisch).

2.3 Komplexionen im starken Ligandenfeld

Die Behandlungsweise läßt sich wie folgt zusammenfassen:

2.3.1 *d*-Einelektronenzustand im kubischen Ligandenfeld (Aufspaltung der *d*-Orbitale im Ligandenfeld)

Der d-Einelektronenzustand (l=2) ist im freien Ion ein 5-fach bahnentarteter Zustand (ein Elektron in der d-Schale kann 5 verschiedene m_l -Werte annehmen), d.h. die 5 linear voneinander unabhängigen d-Funktionen (d-Orbitale) sind energetisch gleichwertig. Im kubischen Ligandenfeld (Oktaeder, Würfel, Tetraeder; O_h , T_d) jedoch zeigt die gruppentheoretische Analyse, dass die Gruppen der 5d-Orbitale in zwei Untergruppen mit jeweils energetisch gleichwertigen Orbitalen aufspaltet. (Die eine Gruppe ist noch 2-fach, die andere noch 3-fach bahnentartet!)

 $e(\gamma_3, d_{\gamma})$

 $t_2(\gamma_s, d\varepsilon)$

Für ein oktaedrisches Ligandenfeld, erzeugt durch Liganden in den Flächenmitten eines Würfels, erkennt man qualitativ:

Die entlang der Koordinatenachsen sich erstreckenden Orbitale wechselwirken gleichmäßig stark mit den auf den Achsen liegenden Liganden.

Die Wechselwirkung der Liganden mit den Orbitalen zwischen den Koordinatenachsen (t_{2g} -Gruppe) ist ebenfalls gleich, aber schwächer als bei den e_g -Orbitalen.

Abb. A. 42. Erstreckung von d_{xy} in einem Würfel. $\times =$ Position der Liganden bei oktaedrischer Konfiguration.

Das von der oktaedrischen Ladungsverteilung erzeugte elektrostatische Potential V setzt sich additiv aus zwei Teilen zusammen: $V = V_{\kappa} + V_0$

 $V_{\rm K}$ bewirkt eine Verschiebung um $\varepsilon_0 (20-40 \,{\rm eV})$, V_0 bewirkt die Aufspaltung des d-Einelektronenzustandes,

 $\Delta = 10 \,\mathrm{Dq} \approx 10000 - 30000 \,\mathrm{cm}^{-1}$

Es gilt der Schwerpunktsatz: Der Energiegewinn bei der Stabilisierung der t_{2g} -Orbitale (im O_h-Feld) ist gleich dem Energieaufwand bei der Destabilisierung der e_g -Orbitale.

Energiebilanz: $\sum_{i} g_i \cdot \Delta E_i = 0$

 $\begin{array}{l} \mbox{mit } g_i \mbox{=} \ Entartungsgrad \ der \ i\mbox{-ten} \ Orbitale \\ \Delta E \mbox{=} \ Energie \mbox{and} \ rung \ gegen \mbox{uber} \ dem \ nicht \\ aufgespaltenen \ Zustand \\ (nach \ Anhebung \ um \ \ensuremath{\epsilon_0}) \end{array}$

Also für d-Einelektronenzustand:

$$(g \cdot \Delta E)_{t_{2g}} + (g \cdot \Delta E)_{e_g} = 0$$
$$3 \cdot (-4D_q) + 2 \cdot 6D_q = 0$$

Die Lagen von t_{2g} und e_g gegenüber ε_0 sind durch die Integrale gegeben:

$$-4\mathbf{Dq} = \int \phi_n^* \mathbf{V}_0 \phi_n \mathrm{d}\,\tau = \left\langle \phi_n \left| \mathbf{V}_0 \right| \phi_n \right\rangle; \ n = 3,4,5$$
$$6\mathbf{Dq} = \int \phi_k^* \mathbf{V}_0 \phi_k \mathrm{d}\,\tau = \left\langle \phi_k \left| \mathbf{V}_0 \right| \phi_k \right\rangle; \ k = 1,2$$

 $\phi_1 \dots \phi_5$ sind die führ reellen *d*-Funktionen (s. Tab. B.2)

Für den Fall von Punktladungen q (auf den Liganden) im Abstand R vom Zentralion ist:

$$\Delta = 10 \text{Dq} = \frac{5}{3} \cdot \frac{q \bar{r}^4}{R^5}$$

 $\bar{\mathbf{r}} =$ mittlerer Abstand des d-Elektrons vom Kern des Zentralions

Aufspaltungsenergie Δ für verschiedene Ligandenanordnungen (gleiche Liganden, gleiche Abstände, gleiches Zentralion):

$$\Delta_{\text{Tetraeder}} = -\frac{4}{9} \Delta_{\text{Oktaeder}}$$
$$\Delta_{\text{Würfel}} = 2 \cdot \Delta_{\text{Tetraeder}} = -\frac{8}{9} \Delta_{\text{Oktaeder}}$$

Bei allen gemeinsam (Oktaeder, Tetraeder, Würfel): Die Liganden liegen auf einer Kugeloberfläche mit gleichen Abständen R zum Zentralion.

Abb. A. 45. Aufspaltung eines d-Einelektronenzustandes in Feldern kubischer Symmetrie.

2.3.2 Aufspaltung der *d*-Orbitale bei Symmetrieerniedrigung

Abb. A. 47. Aufspaltungsbild für einen d-Zustand beim Übergang von oktaedrischer zu tetragonaler Symmetrie. Die durch die tetragonale Störung bewirkten zusätzlichen Aufspaltungen werden durch zwei neue Parameter D_s und D_t beschrieben.

Es ist (bezogen auf ε_0):

$$\mathbf{t}_{2g} \rightarrow \begin{cases} E(e_g) = -4D_q - D_s + 4D_t \\ E(b_{2g}) = -4D_q + 2D_s - D_t \end{cases}$$

$$e_{g} \rightarrow \begin{cases} E(a_{1g}) = +6D_{q} - 2D_{s} - 6D_{t} \\ E(b_{1g}) = +6D_{q} + 2D_{s} - D_{t} \end{cases}$$

Für gestreckte Oktaeder: $D_s > 0, D_t > 0$ Für gestauchte Oktaeder: $D_s < 0, D_t < 0$

Für D_s gilt der Schwerpunktsatz einzeln für t_{2g} - und e_g -Zustände. Für D_t hingegen gilt er nur für die gesamte Konfiguration.

ΚZ	Struktur	d_{z^2}	$d_{x^2-y^2}$	d _{xy}	d_{xz}	d_{yz}
1	b	5.14	-3.14	-3.14	0.57	0.57
2	Linear ^b	10.28	-6.28	-6.28	1.14	1.14
3	Trigonal	-3.21	5.46	5.46	3.86	- 3.86
4	Tetraeder	-2.67	-2.67	1.78	1.78	1.78
4	Quadratisch-planar ^e	-4.28	12.28	2.28	-5.14	- 5.14
5	Trigonale Bipyramide ^d	7.07	-0.82	-0.82	- 2.72	- 2.72
5	Quadratische Pyramide ^d	0.86	9.14	-0.86	-4.57	- 4.57
6	Oktaeder	6.00	6.00	-4.00	4.00	<u> 4.0</u> 0
6	Trigonales Prisma	0.96	- 5.84	- 5.84	5.36	5.36
7	Pentagonale Bipyramide	4.93	2.82	2.82	- 5.28	- 5.28
8	Würfel	- 5.34	- 5.34	3.56	3.56	3.56
8	Quadratisches Antiprisma	- 5.34	-0.89	-0.89	3.56	3.56
9	ReH ₉ -Struktur (s. Abb. 10.56)	-2.25	-0.38	-0.38	1.51	1.51
12	Ikosaeder	0.00	0.00	0.00	0.00	0.00

Relative Energien der d-Orbitale in Ligandenfeldern unterschiedlicher Symmetrie"

^e Alle Energien in Dq_0 .

^b Liganden liegen auf der z-Achse.

Liganden liegen in der xy-Ebene.

⁴ Grundfläche der Pyramide liegt in der xy-Ebene.

Quelle: J.J. Zuckerman, J. Chem. Educ. 42, 315 (1965) sowie R. Krishnamurthy und W.B. Schaap, ibid. 46, 799 (1969).
2.4 Tanabe-Sugano-Diagramm

Sehr wichtig für Interpretation von *optischen* und *magnetischen* Eigenschaften.

2.4.1 Tanabe-Sugano-Diagramm für *d*⁶-Komplexionen:

Auftragung

 $E/B = f(D_q/B)$

B: Racah-Parameter

=Maß für Elektron-Wechselwirkung B ist gleich für alle Zentralionen mit nd^N z.B. B(Fe^{II})=B(Co^{III})

Racah-Parameter aus optischen Spektren!

Beispiel d⁶:

 $10D_q(HS) = E({}^5E) - F({}^5T_2)$

Für LS-Komplexe muß Konfigurations-Wechselwirkung berücksichtigt werden:

 $10D_q(LS) = E({}^{1}T_1) - E({}^{1}A_1) + \frac{1}{4} \left[E({}^{1}T_2) - E({}^{1}T_1) \right]$

2.4.2 Tanabe-Sugano-Diagramm für andere d^N-Komplexionen

2.4.3 Regeln für die Termdiagramme nach Tanabe-Sugano

- 1) Terme gleicher Bezeichnungen, d.h. Zustände gleicher Symmetrie (Rasse) und gleicher Spinmultiplizität können sich im allgemeinen nicht überschneiden ("noncrossing-rule").
- Folgeterme im Ligandenfeld ^{2S+1}Γ haben die gleiche Spinmultiplizität wie ihre Ursprungsterme, d.h. wie die Russell-Saunders-Terme des freien Ions, aus denen sie hervorgehen.
- 3) Die Energien von Zuständen, die nur einmal vorkommen, hängen linear von der Stärke des Ligandenfelds ab. Kommen Zustände ^{2S+1}Γ mehrfach vor, so sind ihre Kurven im Termdiagramm wegen Term- bzw. Konfigurationswechselwirkung gekrümmt (d.h. die Energien solcher Zustände hängen nicht mehr linear von der Stärke des Ligandenfelds ab).
- 4) Für Zustände ^{2S+1}Γ, die vom selben Ursprungsterm ^{2S+1}L des freien Ions herrühren, gilt der Schwerpunktsatz für den Fall, dass keine Termwechselwirkung mit Zuständen gleicher Symmetrie und Multiplizität auftritt, die aus anderen Ursprungstermen hervorgehen.

2.4.4 Dq-Werte und Spektrochemische Serie

Es ist nicht möglich, Dq-Werte für eine bestimmte Komplexverbindung absolut zu berechnen. Man kann Dq-Werte aus Absorptionsspektren auf graphischem Weg erhalten, indem man unter Verwendung eines entsprechenden Termdiagramms von Tanabe-Sugano die experimentell gefundenen Bandenlagen den Termlagen im Diagramm möglichst gut anpaßt und die Werte für Dq bzw. Dq/B abliest. Genauere Werte erhält man auf rechnerischem Wege.

(Y.Tanabe, S.Sugano, J.Phys.Soc. (Japan) 9, 753, 766 (1954); A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984)

In einigen Fällen (d³, d⁶, d⁸) liefert das Maximum der ersten spinerlaubten Bande direkt den Wert für $\Delta = 10$ Dq. In anderen Fällen (d², d⁶ diamagnetisch, d⁷) kann man Δ nicht direkt aus dem Absorptionsspektrum erhalten, sondern muss Korrekturen für Konfigurations- bzw. Termwechselwirkung (20% des Energiewertes des ersten Bandenmaximums) berücksichtigen.

Aus spektroskopischen Befunden ergeben sich folgende allgemeine Regeln für die Größe des Feldstärkeparameters Dq.

 Komplexverbindungen mit gleichen Liganden, die zu derselben Übergangsmetallreihe gehören und Zentralionen der gleichen Ladungszahl besitzen, zeigen sehr ähnliche Dq-Werte. Für die erste Übergangsmetallreihe findet man für dreiwertige Zentralionen, z.B. bei [M(H₂O)₆]³⁺-Komplexen, Dq-Werte zwischen 2040 cm⁻¹ (M=Ti³⁺) und 1370 cm⁻¹ (M=Fe³⁺)

Tab. A.6. Dq-Werte für Aquokomplexe (in cm ⁻¹)								
TiVCrMnFeCoNiCu								
zweiwertig	-	1220	(1260)	780	1050	970	850	(1250)
dreiwertig	2040	1900	1770	(2100)	1400	2000	-	-
() tetragonal verzerrte Komplexe, daher Dq-Wert unsicher								

2. Komplexe mit identischen Liganden zeigen größere Dq-Werte, wenn die Ladungszahl des Zentralions höher ist. So findet man bei [M^{III}(H₂O)₆]³⁺-Ionen Dq-Werte in der Größenordnung von ca. 2000 cm⁻¹, bei [M^{II}(H₂O)₆]²⁺-Ionen bei ca. 1000 cm⁻¹. Im allgemeinen ist Dq bei einem Komplex mit dreiwertigem Zentralion zwischen 40 und 80% größer als bei einer entsprechenden Komplexverbindung mit zweiwertigem Zentralion. Für Komplexe mit sehr niedrigen Wertigkeitsstufen des Zentralions (anomale Wertigkeiten), wie z.B. [V^Idip₃]⁺, ist dies nicht mehr der Fall.

- 3. Betrachtet man Komplexverbindungen mit gleichen Liganden, jedoch mit Zentralionen, die zu verschiedenen Übergangsmetallreihen gehören, so findet man, wenn man von der ersten zur zweiten Reihe der Übergangsmetallionen oder von der zweiten zur dritten fortschreitet, jeweils eine Zunahme von Dq um etwa 30 bis 40%.
- 4. Man kann die üblichen Liganden in einer Reihe nach steigenden Dq-Werten, d.h. zunehmender Stärke des Ligandenfeldes, ordnen, wobei die Reihenfolge der Liganden innerhalb einer solchen Anordnung im allgemeinen unabhängig davon ist, welche Zentralionen die Komplexe besitzen:

 $\begin{aligned} \mathbf{J}^{-} &< \mathbf{Br}^{-} < \mathbf{Cl}^{-} \sim \mathbf{SCN}^{-} \sim \mathbf{N}_{3}^{-} < (\mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O})_{2}\mathbf{PS}_{2}^{-} < \mathbf{F}^{-} < (\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{NCS}_{2}^{-} < (\mathbf{NH}_{2})_{2}\mathbf{CO} < \\ &< \mathbf{OH}^{-} < (\mathbf{COO})_{2}^{2^{-}} \sim \mathbf{H}_{2}\mathbf{O} < \mathbf{NCS}^{-} < \mathbf{NH}_{2}\mathbf{CH}_{2}\mathbf{COO}^{-} < \mathbf{NCSHg}^{+} \sim \mathbf{NH}_{3} \sim \mathbf{C}_{5}\mathbf{H}_{5}\mathbf{N} < \\ &< \mathbf{NH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{NH}_{2} \sim \mathbf{SO}_{3}^{2^{-}} < \mathbf{NH}_{2}\mathbf{OH} < \mathbf{NO}_{2}^{-} < \mathbf{H}^{-} \sim \mathbf{CH}_{3}^{-} < \mathbf{CN}^{-} < \mathbf{CO} < \mathbf{NO}^{+} \end{aligned}$

Ersetzt man einen Liganden in einem Komplexion durch einen in der Serie rechts von ihm stehenden, so beobachtet man eine Verschiebung des Spektrums nach kürzeren Wellenlängen (hypsochromer Einfluss), d.h. zu größeren Wellenzahlen.

Das Cu^{2+} -Aquoion $[Cu(H_2O)_6]^{2+}$, z.B. in wäßrigen Lösungen von $CuSO_4 \cdot 5H_2O$, ist schwach blau gefärbt. Die Absorptionsbande liegt hier bei ~12600cm⁻¹. Setzt man Ammoniak zu, so entstehen Kupferamminkomplexe, bei denen H₂O durch Ammoniak ersetzt wird. Sie haben die bekannte intensiv blauviolette Farbe. Der Schwerpunkt der Absorption liegt nun bei ~15100 cm⁻¹, da der Ersatz von H₂O durch NH₃ mit einer Vergrößerung der Ligandenfeldstärke verbunden ist. Wasserfreies CuSO₄ schließlich ist bekanntlich farblos. Das Ligandenfeld der SO₄²⁻ Ionen ist hier so gering, dass die Absorptionsbande ins NIR wandert.

Ordnet man nach den Atomen, mit denen die betreffenden Liganden am Metallion koordinieren, so findet man:

J < Br < Cl < S < F < O < N < C,

eine Serie, die in Richtung abnehmender Radien der Atome verläuft.

5. Dq kann – worauf C.K. Jörgensen hingewiesen hat – näherungsweise als Produkt einer Funktion f, die nur von den Liganden abhängt, und einer Funktion g, die nur vom Zentralion abhängt, geschrieben werden:

$D_q \approx f(Liganden) \cdot g(Zentralion)$

Wenn man [MA₆]-Komplexe mit gleichen Liganden A betrachtet, so ist es möglich, eine Reihe der Zentralionen anzugeben, die nach steigenden Dq-Werten geordnet sind:

$$\begin{split} Mn(II) < Co(II) \sim Ni(II) < V(II) < Fe(III) < Cr(III) < Co(III) < Mn(IV) < \\ < Mo(III) < Rh(III) < Ir(III) < Re(IV) < Pt(IV) \end{split}$$

6. Man kann empirisch eine Regel der mittleren Umgebung feststellen, die besagt, dass die Dq-Werte von gemischten Komplexen [MA_nB_{6-n}] sich näherungsweise durch lineare Interpolation zwischen den Dq-Werten für [MA₆] und [MB₆] ergeben:

$$D_{q}([MA_{n}B_{6-n}]) \approx \frac{n}{6}D_{q}([MA_{6}]) + \frac{6-n}{6}D_{q}([MB_{6}]).$$

2.5 Ligandenfeldstabilisierung

2.5.1 LFSE bei kubischen Komplexionen in der Näherung des schwachen Feldes

Nach der Methode des schwachen Feldes ist die Ligandenfeldstabilisierungsenergie (LFSE) gleich dem Energiebetrag, um den der Folgeterm des Grundzustands gegenüber dem Russell-Saunders-Term, aus dem dieser Folgeterm hervorgeht, bei Einschaltung des Ligandenfeldes absinkt.

Tabelle A. 19. Ligandenfeldstabilisierungsenergien in der Näherung des schwachen Feldes für O_h -Symmetrie (normal magnetische Komplexe). (Vgl. auch Tab. A. 20).

Konfiguration des Zentralions	LFSE in Dq	Grundterm des Komplexions
d^1	- 4	$^2T_{2g}$
d^2	- 6*	$3T_{1g}$
d^3	- 12	$4A_{2g}$
d^4	- 6	5E_g
d^5	0	$^{6}A_{1g}$
d^6	- 4	⁵ T _{2g}
d^7	- 6*	${}^4T_{1g}$
d^8	-12	³ A _{2g}
d^9	- 6	$^{2}E_{g}$

* Bei Berücksichtigung der Termwechselwirkung vergrößern sich die Werte.

Zu entsprechenden Resultaten kommt man mit Hilfe der Methode des starken Feldes. Hier ist die LFSE

a) für die Konfiguration $d\varepsilon^n d\gamma^{N-n}$ eines Grundterms im oktaedrischem Feld:

 $LFSE(okt.) = -[4n - 6(N - n)]D_q$

b) für die Konfiguration $d\varepsilon^n d\gamma^{N-n}$ eines Grundterms im tetraedrischem Feld:

 $LFSE(tetr.) = -[6n - 4(N - n)]D_a$

(n bzw. N-n ist die Zahl der Elektronen in den jeweiligen Orbitalen). Zu berücksichtigen ist dabei:

 $-D_q(tetr.) = \frac{4}{9}D_q(okt.)$

2.5.2 Ligandenfeldstabilisierung in der Näherung des starken Feldes

	Tabelle A. 20.LFSE bei oktaedrischen Komplexenin der Näherung des starken Feldes.								
	high-spin-Komplexe			low-spi	zusätzliche				
N	Kon- figuration	on- Grund- LFSE Kon- Grund- term figuration term		Grund- term	LFSE	Stabilisierung			
			${\mathop{\rm in}}{Dq}$			$\mathop{\mathrm{in}}\limits_{Dq}$	\inf_{Dq}		
1	$d\varepsilon^1$	$^{2}T_{2a}$	- 4						
2	$d\varepsilon^{2*}$	$\frac{2g}{3T_{1g}}$	- 8		-				
3	$d \epsilon^3$	$\frac{-3}{4A_{2g}}$	- 12		-				
4	$d\varepsilon^3 d\gamma$	$5E_g$	- 6	$d\varepsilon^4$	$3T_{1g}$	- 16	<u> </u>		
5	$d arepsilon^3 d \gamma^2$	⁶ A _{1g}	0	$d \varepsilon^5$	$2T_{2g}$	-20	-20 (2)		
6	$d \varepsilon^4 d \gamma^2$	$5T_{2g}$	- 4	$d\varepsilon^6$	$^{1}A_{1g}$	- 24	-20 (2)		
7	$d \varepsilon^5 d \gamma^2 *$	${}^{4}T_{1g}$	- 8	$d \varepsilon^6 d \gamma$	$^{2}E_{g}$	- 18	- 10 (1)		
8	$d \varepsilon^6 d \gamma^2$	${}^{3}A_{2g}$	-12						
9	$d \varepsilon^6 d \gamma^3$	$^{2}E_{g}$	- 6						

* Die Elektronen- sowie Konfigurationswechselwirkung, die in diesen Fällen zu einer Änderung der LFSE führen, bewirken, daß die LFSE zwischen – 6 Dqund – 8 Dq variieren kann. McCLURE [6] verwendet – 7 Dq als Mittelwert. ${}^{3}T_{1g}$ und ${}^{4}T_{1g}$ sind keine reinen $d\varepsilon^{2}$ - bzw. $d\varepsilon^{5} d\gamma^{2}$ -Zustände, sondern enthalten Anteile von $d\varepsilon d\gamma$ bzw. $d\varepsilon^{4} d\gamma^{3}$.

	high-spin-Komplexe			low-spi	zusätzliche		
N	Kon- figuration	Grund- term	LFSE	Kon- figuration	Grund- term	LFSE Stabilisier	
			$\mathop{\mathrm{in}}_{Dq}$			$\mathop{\mathrm{in}}_{Dq}$	$\mathop{\mathrm{in}} olimits Dq$
1	$d\gamma^1$	2E	- 6				
2	$d\gamma^2$	$^{3}A_{2}$	- 12		_		
3	$d\gamma^2 d\varepsilon^*$	$^{4}T_{1}$	- 8	$d\gamma^3$	^{2}E	— 18	- 10 (1)
4	$d\gamma^2darepsilon^2$	$5T_{2}$	- 4	$d\gamma^4$	$^{1}A_{1}$	- 24	- 20 (2)
5	$d\gamma^2darepsilon^3$	⁶ A ₁	0	$d\gamma^4darepsilon^1$	2T_2	-20	- 20 (2)
6	$d\gamma^3d\varepsilon^3$	5 <u>E</u>	- 6	$d\gamma^4darepsilon^2$	$^{3}T_{1}$	- 16	- 10 (1)
7	$d\gamma^4darepsilon^3$	$^{4}A_{2}$	- 12				
8	$d\gamma^4 d\varepsilon^4 *$	$^{3}T_{1}$	- 8				
9	$d\gamma^4 d\varepsilon^5$	$^{2}T_{2}$	- 4				

Für den Fall der Low-spin-Verbindungen ist als zusätzliches Glied noch die Spinpaarungsenergie P zu berücksichtigen, so dass die Beziehungen für die Ligandenfeldstabilisierungsenergien dann lauten:

$$LFSE(Okt.) = -[4n - 6(N - n)]D_a + P$$

 $LFSE(Tetr.) = -[6n - 4(N - n)]D_q + P$

Tabelle A. 22. Gesamte Spinpaarungsenergie P sowie mittlere Spinpaarungsenergie Π als Funktion der Elektronenwechselwirkungsparameter B und C^* .

Zah d -Elek Okt. (O_h)	l der	Gesamte Spin-	Mittlere Paarungsenergie Π			
	tronen	paarungsenergie	pro 10 Dq			
	Tetr. (T_d)	P	Ligandenfeldstabilisierung			
4 5 6 7	6 5 4 3	$6B+5C\ 15B+10C\ 5B+8C\ 4B+4C$	6B + 5C 7.5B + 5C 2.5B + 4C 4B + 4C			

* Ermittelt aus den Matrixelementen nach der Methode des starken Feldes (ohne Berücksichtigung der Konfigurationswechselwirkung).

Für die meisten Übergangsmetallionen gelten als Schätzwerte: $B \approx 1000 \text{ cm}^{-1} \text{ und } C \approx 4 \text{ B.}$

2.5.3 Auswirkung der Ligandenfeldstabilisierung auf die thermodynamischen Eigenschaften von Übergangsmetallverbindungen

Hydratationswärmen ΔH_H

Hydratationswärme ist die Wärme, die frei wird, wenn das gasförmige Metallion in Wasser gelöst wird:

$$Me^{n+}_{gasf.} \xrightarrow{H_2O} [Me(H_2O)_6]^{n+}_{aq.} + \Delta H_H$$

Nach der klassischen elektrostatischen Theorie sollte $\Delta H_{\rm H}$ mit zunehmender Ordnungszahl des Metallions (z.B. von Ca²⁺ zu Zn²⁺) monoton zunehmen. Wegen der Ligandenfeldstabilisierung ist dies jedoch nicht der Fall. Nur für d⁰-, d⁵- und d¹⁰-Ionen liegen die Punkte auf der gestrichelten Geraden (da hier keine Ligandenfeldstabilisierung eintritt!).

 ΔH_{H} kann somit näherungsweise aus zwei Anteilen additiv zusammengesetzt werden:

 $\Delta H_{\rm H} = \Delta H_{\rm korr.} + \Delta H_{\rm lig.},$

wobei $\Delta H_{lig.}$ die in Einheiten Dq angegebene LFSE und $\Delta H_{korr.}$ den bei kugelsymmetrischer Ladungsverteilung zu erwartenden Anteil der Hydratationswärme bedeuten.

Die nach LFSE korrigierten Werte (Kreuze) liegen nahezu auf der gestrichelten Geraden.

Zur Korrektur der ΔH_{H} -Werte werden spektroskopisch ermittelte Dq-Werte eingesetzt. Umgekehrt lassen sich Dq-Werte auf thermodynamischem Weg ermitteln, nämlich aus dem Abstand zwischen der Geraden und dem Meßpunkt - ΔH_{H} Für ein nichtlineares Molekül mit bahnentartetem Grundzustand ist kubische Symmetrie nicht stabil. Es erfolgt Molekülverzerrung mit einhergehender Symmetrieerniedrigung.

Jahn-Teller-Stabilisierung bei Übergangsmetallkomplexen

Tabelle A. 26. Mit Hille von Abb. A. 87 abgeschatzte 5 unit-Tetter-Stabinsterung für tetragonal verzerrte oktaedrische Ligandenanordnung (ausgedrückt durch die Parameter δ_1 und δ_2 , $\delta_1 < \delta_2 \ll \Delta$).								
	$\begin{array}{c} \hline \\ \text{Zahl der} \\ d\gamma \text{-Elek-} \\ \text{tronen} \end{array}$	gestrecktes Kon- figuration	s Oktaeder Stabili- sierung	gestauchtes Oktaeder Kon- Stabili- figuration sierung				
$\left. egin{array}{c} darepsilon^3 \ \mathrm{bzw.} \ darepsilon^6 \end{array} ight ight ight angle$	1	a_{1g}^1	$-rac{\delta_2}{2}$	b_{1g}^1	$-rac{\delta_2}{2}$			
	3	$a_{1g}^2 b_{1g}$	$-rac{\delta_2}{2}$	$b_{1g}^2 a_{1g}$	$-rac{\delta_2}{2}$			
	${f Zahl\ der}$	gestreckte	s Oktaeder	gestauchtes Oktaeder				
	$darepsilon ext{-Elek-} ext{tronen}$	Kon- figuration	Stabili- sierung	Kon- figuration	Stabili- sierung			
$d\gamma^0 \ { m bzw.} \ d\gamma^2$	1	e_g^1	$-rac{\delta_1}{3}$	b_{2g}^1	$-rac{2\delta_1}{3}$			
	2	e_g^2	$-rac{2\delta_1}{3}$	$b_{2g}^1e_g^1$	$-rac{\delta_1}{3}$			
	4	$e_g^3 b_{2g}^1$	$-rac{\delta_1}{3}$	$b_{2g}^2 e_g^2$	$-rac{2\delta_1}{3}$			
	5	$e_g^4 b_{2g}^1$	$-rac{2\delta_1}{3}$	$b_{2g}^2 e_g^3$	$-rac{\delta_1}{3}$			

Take Tollor Stabilisierung

 δ_1 ist we sentlich kleiner als die Spinpaarungsenergie, so daß keine Paarung auftritt.

Beispiele für Jahn-Teller-aktive ÜM-Komplexe

Tetragonale Verzerrung mit Stabilisierung um $-\frac{1}{2}\delta_2$ (gegenüber O_h) bei ÜM-Komplexen, zu erwarten mit ungerader Zahl von $d\gamma$ -Elektronen:

 d^4 : ${}^5E_g(d\varepsilon^3 d\gamma^1)$, z.B. Cr^{2+} , Mn³⁺ H.S.

d⁷: ²E_g($d\varepsilon^6 d\gamma^1$), z.B. Co²⁺, Ni³⁺ L.S. d⁹: ²E_g($d\varepsilon^6 d\gamma^3$), z.B. Cu²⁺

J.T.-Verzerrung des Oktaeders ist auch zu erwarten bei ÜM-Komplexen mit 1,2,4 und 5 $d\varepsilon$ -Elektronen:

d¹: ²T_{2g}(
$$d\varepsilon^{1}$$
), z.B. Ti³⁺
d²: ³T_{2g}($d\varepsilon^{2}$), z.B. Ti²⁺, V³⁺
d⁴: ³T_{1g}($d\varepsilon^{4}$), z.B. Cr²⁺, Mn³⁺ L.S.
d⁵: ²T_{2g}($d\varepsilon^{5}$), z.B. Mn²⁺, Fe³⁺ L.S.
d⁶: ⁵T_{2g}($d\varepsilon^{4}d\gamma^{2}$), z.B. Fe²⁺, Co³⁺ H.S.
d⁷: ⁴T_{1g}($d\varepsilon^{5}d\gamma^{2}$), z.B. Co²⁺, Ni³⁺ H.S.

Optische Eigenschaften von Komplexverbindungen Vorbemerkungen

Optische Eigenschaften (Farbe) von Übergangsmetall-Komplexen treten im Wellenlängenbereich von 400-800 nm, im sog. "UV/Sichtbaren"-Bereich auf. Entsprechend nennt man die spektroskopische Methode: UV/VIS-Spektroskopie Äquivalente Bezeichnungen sind:

"Elektronenanregungs-Spektroskopie"

"Ligandenfeld-Spektroskopie"

(bei Übergangsmetall-Komplexen)

Spektroskopie erfolgt sowohl in Absorption als auch in Emission:

Elektronenübergänge im Komplexmolekül schematisch:

MLCT: Metall → Ligand Chargetransfer (Metalloxidationsbande)
 LMCT: Ligand → Metall Chargetransfer (Metallreduktionsbande)

Interpretation von UV/VIS-Spektren von Übergangsmetall-Komplexen mit Hilfe von:

a) Ligandenfeldtheorie:

b) Molekülorbitaltheorie:

d-d-Übergänge

Chargetransfer-Übergänge, Innerligandübergänge Typisches UV/VIS-Spektrum eines Übergangsmetall-Komplexions:

- a) Elektronenübergangsbanden
 - (Charge-transfer-Banden)
- b) Übergänge zwischen Zuständen des Liganden (inner ligand transitions)

Für Übergänge:
I. Zentralion → Ligand
II. Ligand → Zentralion

log ε ~ 4-5

 $\log \varepsilon \sim 0-2$

 $\lambda > 350$ bis 400 mµ Zentralionenbanden (d \rightarrow d-Banden)

Lambert-Beersches Gesetz-Gesetz

$$\frac{lg}{I_0} = -\varepsilon \cdot c \cdot d$$

c = Konzentration [Mol 1⁻¹]

d = Probendicke [cm]

 ϵ = Molarer dekadischer Extinktionskoeffizient [1 Mol⁻¹ cm⁻¹] = [M⁻¹ cm⁻¹]

= [M]

3.2 Auswahlregeln

Die Intensität (Wahrscheinlichkeit) von Elektronenübergängen wird von Auswahlregeln bestimmt.

Intensität: I ~ P² P = Übergangsmoment $\mathbf{P} = \left\langle \boldsymbol{\psi}_{a} \left| \hat{\boldsymbol{\mu}}_{el} \right| \boldsymbol{\psi}_{e} \right\rangle$ $\hat{\boldsymbol{\mu}}_{el} = \sum e_{i} \vec{r}_{i} = \text{elektrischer Dipolvektor}$

 $\hat{\mu}_{el}$ hat dasselbe Symmetrieverhalten wie der Ortsvektor \vec{r} $\hat{=}$ ungerade Funktion

Für erlaubte Übergänge gilt:

$$\mathbf{P} = \left\langle \psi_{a} \left| \vec{\mu}_{el} \right| \psi_{e} \right\rangle \neq \mathbf{0}$$

 ψ_{a}, ψ_{e} : Funktionen des Ausgangs- bzw. Endzustands

 $\psi_k = \psi_k (\text{Ort}) \cdot \psi(\text{Spin})$ (Schwingungen nicht betrachtet)

Da $\hat{\mu}_{el}$ nur auf ψ (Ort) wirkt, nicht aber auf den Spin, ist: $\mathbf{P} = \left\langle \psi_{a}(\text{Spin}) \middle| \psi_{e}(\text{Spin}) \right\rangle \left\langle \psi_{a}(\text{Ort}) \middle| \hat{\bar{\mu}}_{el} \middle| \psi_{e}(\text{Ort}) \right\rangle$

 $P \neq 0$ nur, wenn beide Teilintegrale von Null verschieden sind: $\langle \psi_{a}(Spin) | \psi_{e}(Spin) \rangle \neq 0$, wenn $\psi_{a}(Spin) = \psi_{e}(Spin)$

d.h. $\Delta S = 0$: Der Spinzustand darf sich nicht ändern.

$$\left\langle \underbrace{\psi_{a}(Ort)}_{g} \middle| \begin{array}{c} \widehat{\mu}_{el} \middle| \psi_{e}(Ort) \right\rangle \neq 0, \text{ wenn} \\ g \times u \times u = \text{gerade} \\ \end{array} \right\rangle$$

Wenn ψ_a gerade (z.B. d-Funktion), muss ψ_e ungerade sein (z.B. p-, f-Funktion).

D.h. elektronische Übergänge sind nur erlaubt zwischen Zuständen ungleicher Parität (Laporte-Regel)

3.3 Beispiele3.3.1 Titan (III)-Komplexe

Ti³⁺ (3d¹), man erwartet nur eine Absorptionsbande: ${}^{2}T_{2} \rightarrow {}^{2}E$, häufig mit Doppelstruktur.

Beispiel: $\text{TiCl}_3 \cdot 6\text{H}_2\text{O} = [\text{Ti}(\text{H}_2\text{O})_6]\text{Cl}_3$

Die Doppelstruktur der Ti³⁺ Bande kommt durch Jahn-Teller-Verzerrung zustande:

- > Der bahnentartete ${}^{2}T_{2}$ -Grundzustand ist nicht stabil und spaltet durch Symmetrieerniedrigung auf.
- Bei der Symmetrieerniedrigung von O_h nach D_{4h} (Stauchung oder Streckung entlang der z-Richtung) spalten die Terme ²T_{2g} und ²E_g auf.

Die Termreihenfolge gilt ein in z-Richtung gestauchtes Oktaeder. Die neuen Termbezeichnungen nach Symmetrieerniedrigung erhält man aus dem Korrelationsschemata.

Tabelle B.13. Korrelationsschemata.									
a) :	a) für Untergruppen von O_h					b) für Untergruppen von D_{4h}			
Oh	T_d	$D_{4\hbar}$	D_3	-	D_{4h}	C_{4v}	C_{2v}		
A_{1g}	A_1	A_{1g}	A_1		A_{1g}	A_1	A_1		
$A_{1 u}$	A_2	A _{1 u}	A_1	-	A_{1u}	A_2	A_2		
A_{2g}	A_2	B_{1g}	A_2		A_{2g}	A_2	B_1		
A_{2u}	A_1	$B_{1 u}$	A_2	_	A_{2u}	A_1	B_2		
Eg	E	$A_{1g} \dotplus B_{1g}$		-	B_{1g}	B_1	A_1		
Eu	E	$A_{1u} \dot{+} B_{1u}$	E		$B_{1 u}$	B_2	A_2		
T_{1g}	T_1	$A_{2g} \dotplus E_g$	$A_2 \dot{+} E$	_	B_{2g}	B_2	B_1		
$T_{1 u}$	T_{2}	$A_{2u} \dot{+} E_u$	$A_2 \dot{+} E$		B_{2u}	B_1	B_2		
T_{2g}	${T}_2$	$B_{2g} \dotplus E_g$	$A_1 \dot{+} E$		E_{g}	E	$A_2\dot{+}B_2$		
T_{2u}	T_1	$B_{2u} \dotplus E_u$	$A_1 \dot{+} E$		Eu	E	$A_1 \dot{+} B_1$		

Infolge der Jahn-Teller-Verzerrung wird der Grundzustand von Ti³⁺-Komplexen um -2/3 δ_1 abgesenkt ($\delta_1 \sim 1000 \text{ cm}^{-1}$). Dabei wird das Oktaeder in z-Richtung gestaucht.

3.3.2 Chrom (III)-Komplexe

Freies Cr³⁺-Ion (3d³) besitzt einen ⁴F-Grundzustand, der in Ligandenfeldern verschiedener Symmetrien wie folgt aufspaltet:

Beispiel: Absorptionsspektrum von $[Cr(H_2O)_6]^{3+}$

Termsystem des Cr³⁺ bei oktaedrischer Symmetrie des Ligandenfeldes unter Berücksichtigung der Quartett-Terme.

Zur Deutung des Absorptionsspektrums von $[Cr(H_2O)_6]^{3+}$ betrachten wir die Ligandenfeld-Aufspaltung ohne und mit Termwechselwirkung:

Beispiel: Absorptionsspektrum von $[Cr(en)_3]^{3+}$

Die Ligandenfeldbanden I und II sind den spinerlaubten Übergängen ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ bzw. ${}^{4}A_{2g} \rightarrow a^{4}T_{1g}$ (⁴F) zuzuordnen.

Der spinerlaubte Übergang ${}^{4}A_{2g} \rightarrow b^{4}T_{1g}$ (⁴P) tritt bei ca. 33 000 cm⁻¹ auf und wird von Bande II überdeckt (\rightarrow Schulter)

Die intensitätsschwachen Banden J1 sind paritäts- und spinverbotene Übergänge. Sie werden **"Interkombinationsbanden"** genannt.

3.3.3 Interkombinationsspektren

Als reine Interkombinationsspektren bezeichnet man Spektren, bei denen im langwelligen Teil **nur** Interkombinationsbanden auftreten. Sie resultieren aus spin- und paritätsverbotenen Elektronenübergängen.

Im Falle von Cr³⁺-Komplexen sind sie als schwache Banden neben stärkeren spinerlaubten Ligandenfeldbanden im sichtbaren Bereich zu beobachten.

Nur spin- und paritätsverbotene Übergänge (reine Interkombinationsspektren) beobachtet man bei d⁵-Komplexen (Fe³⁺, Mn²⁺).

Beispiel: Absorptionsspektrum von $[Mn(H_2O)_6]^{2+}$

Abb. A. 35. Termsystem eines Ions der Konfiguration d^5 im oktaedrischen Feld $([Mn(H_2O)_6]^{2+})$ (schematisch).

3.3.4 Spincrossover-Komplexe

Thermischer Spinübergang (spincrossover) kann bei Komplexverbindungen der 3d-Reihe mit Elektronenkonfigurationen $3d^4-3d^7$ auftreten, wenn die kritische *Ligandenfeldstärke* und die *Spinpaarungsenergie* π annähernd gleich groß sind:

$$\Delta_{\rm krit.} \approx \pi$$

Thermodynamisch lautet die Bedingung für das Auftreten von thermisch induziertem Spinübergang:

$$\Delta G_{HL} = G_{HS} - G_{LS} \approx k_B T$$
$$\Delta G_{HL} = \Delta H_{HL} - T\Delta S_{HL} \approx k_B T$$

Wenn
$$\Delta G_{HL} = 0$$

 $\Delta H_{HL} = T\Delta S_{HL}$

 $T_{SCO} = \Delta H_{HL} / \Delta S_{HL} = Spincrossover-Temperatur$

Eisen(II)-Komplexe – 3d⁶ 3d-Orbitale 3d-Orbitale

S = **0** "Low Spin" diamagn.

Spin Transition (Spin Crossover)

LS ↔ HS In Übergangsmetall-Komplexen mit 3d⁴...3d⁷

häufig in

3d⁵: Eisen(III)

3d⁶: Eisen(II)

3d⁷: Kobalt(II)

seltener in

3d⁴: Mangan(III)

3d⁶: Kobalt(III)

Molekulares Chamäleon – Komplexmoleküle schalten durch Temperaturänderung, Licht und Druck

Schaltprinzip

Schaltprinzip

Thermischer Spinübergang in Eisen(II)-Komplexen: Bedingung

Geeignet für SCO: FeN₆-Koordination

Phenanthrolin

NCS- Thiocyanat

$[Fe(ptz)_6](BF_4)_2$ ptz =1-Propyl-1H-tetrazol

ab-Plane

$[Fe(ptz)_6](BF_4)_2$

HS

LS

15

25 · 10³

CM

0.0

5

300 K

80 K

10 K green light

Light-Induced Excited Spin State Trapping

"LIESST"

S. Decurtins,P. Gütlich,C.P. Köhler,H. Spiering,A. Hauser(1985)

3.3.5 Chargetransfer (CT) - Spektren

Bei elektrischer Dipol (E1) –Wechselwirkung zwischen Licht und einem Komplexmolekül können zusätzlich zu den bislang betrachteten (paritätsverbotenen) d-d-Übergängen auch Elektronen zwischen Zentralion und Liganden übertragen werden:

$$ZI \xrightarrow{e^-} L; \varepsilon_{max} \sim 10^4 - 10^5$$

Die in optischen Spektren beobachteten zugehörigen Banden nennt man Chargetransfer (CT) – Banden.

Da solche Elektronenübergänge spin-und-paritätserlaubt sind, sind die Intensitäten der CT-Banden um einige Zehnerpotenzen größer als bei spinerlaubten aber paritätsverbotenen d-d-Übergängen.

Für $ZI \xrightarrow{e^-} L:$ "Metalloxidationsbanden" $ZI \xleftarrow{e^-} L:$ "Metallreduktionsbanden"

Metalloxidationsbanden

Elektronenübergang erfolgt aus einem Molekülorbital (MO) mit vorwiegend Metallcharakter in ein MO mit vorwiegend Ligandcharakter. Sie treten umso langwelliger auf, je leichter das Metallion oxidierbar ist, d.h. je niedriger der Oxidationszustand des Zentralions ist.

Metallreduktionsbanden

Elektronenübergang erfolgt aus einem MO mit vorwiegend Ligandcharakter in ein MO mit vorwiegend Metallcharakter . Sie treten umso langwelliger auf, je leichter das Metallion reduzierbar ist, d.h. je höher der Oxidationszustand des Zentralions ist.

Zur Interpretation von CT-Spektren bedient man sich der Molekülorbitaltheorie.

Im folgenden sind schematische MO-Diagramme für oktaedrische Komplexionen unter Berücksichtigung von σ - und π -Bindungen gezeigt:

Z.B. CO, CN⁻, R₃P, R₃As, Phenanthrolin, Pyridin, Dipyridyl als Liganden

Z.B. Cl⁻, Br⁻, OH⁻ als Liganden

 O_h -Komplex, Liganden als π -Akzeptoren O_h -Komplex, Liganden als π -Donoren

	π –Akzeptor-Lig.anden	π –Donor-Liganden
Beispiele:	CN ⁻ , NO+, Arsine, Aryl, Phosphine, phen, dipy, (Stark-Feld-Komplexe)	Halogenidionen, OH ⁻ , ox ²⁻ , en, (Schwachfeld-Lig.)
Energie der Liganden- π -Orbitale	Höher als 3d, nicht oder nur teilweise besetzt	Niedriger als 3d, voll besetzt
,,Bindende" $t_{2g}(\pi)$ -MO hat vorwiegend	Metall-Charakter	Ligandencharakter
"Antibindende" $t_{2g}(\pi^*)$ -MO hat vorwiegend	Ligandencharakter	Metall-Charakter
Elektrondelokalisierung im "Bindenden" $t_{2g}(\pi)$	Metall \rightarrow Ligand ,, $d_{\pi}p_{\pi}$ -Rückbindung"	Ligand \rightarrow Metall
Kubischer Ligandenfeld- Parameter 10Dq	$E(e_g(\sigma^*)) - E(t_{2g}(\pi))$ groß	$E(e_g(\sigma^*)) - E(t_{2g}(\pi^*))$ klein
Paritätsverbotener d-d- Übergang (im UV/vis)	$\begin{array}{c} t_{2g}(\pi) \rightarrow e_{g}(\sigma^{*}) \\ (\rightarrow 10 \text{ Dq}) \end{array}$	$\begin{array}{c} t_{2g}(\pi^*) \rightarrow e_g(\sigma^*) \\ (\rightarrow 10 \text{ Dq}) \end{array}$
Erlaubte CT-Übergänge	MLCT:	LMCT:
(im UV/vis)	$t_{2g}(\pi) \to t_{2u}(\pi^n)$	$t_{2u}(\pi) \to t_{2g}(\pi^*)$
	$t_{2g}(\pi) \rightarrow t_{1u}(\sigma^*, \pi^*)$	$t_{2u}(\pi) \to e_g(\sigma^*)$

Mögliche Elektronenübergänge in oktaedr. Übergangsmetallkomplexen mit σ-Bindung

Mögliche Elektronenübergänge in oktaedr. Übergansmetallkomplexen mit π -Rückbindung

Mögliche Ekeltronenübergänge in oktaedr. Übergangsmetallkomplexen mit σ - und π -Bindung.

4. Magnetochemie

4.1 Erscheinungsformen von Magnetismus

Zwei Gruppen:

 a) Die magnetischen Eigenschaften von Stoffen resultieren aus der Wechselwirkung der einzelnen Atome/Ionen mit dem Magnetfeld.
Die magnetischen Eigenschaften der einzelnen Atome/Ionen ergeben additiv die magnetischen Eigenschaften der makroskopischen Materie.
Wechselwirkungen der Teilchen untereinander existieren praktisch nicht bzw. sind vernachlässigbar. Dazu gehören:

- Diamagnetismus
- Paramagnetismus
- Temperaturunabhängiger Van-Vleck-Paramagnetismus

 b) Magnetische Erscheinungen resultieren aus der Wechselwirkung des Magnetfeldes mit den einzelnen Teilchen und aus Wechselwirkungen der Teilchen untereinander (kooperative Erscheinung). Dazu gehören:

- Ferromagnetismus
- Antiferromagnetismus
- Ferrimagnetismus
- Magnetismus des Metall-Elektronengases

4.2 Diamagnetismus

Diamagnetismus entsteht durch Wechselwirkungen des äußeren Magnetfelds \vec{H} mit abgeschlossenen Elektronenschalen. Diamagnetismus ist ein im Magnetfeld <u>induzierter</u> <u>Effekt.</u>

Atomistische Deutung:

Ein mit der Winkelgeschwindigkeit ω im Abstand \overline{r} um einen Atomkern kreisendes Elektron erzeugt den Strom

und das magnetische Moment

$$i = e \cdot v = \frac{\omega e}{2\pi}$$
$$M = \mu_0 \cdot i \cdot F \qquad \left(F = r^2 \pi\right)$$

 μ_0 = Induktionskonstante = $4\pi \cdot 10^{-7} \text{ VsA}^{-1}\text{m}^{-1}$

Beim Einschalten eines Magnetfelds wirkt die Kraft (Lorentz-Kraft) auf das Elektron:

 $\vec{K} = -e[\vec{u} \times \vec{B}]$

Folge:

• Zusätzliche Präzessionsbewegung mit der Frequenz ω_L (Larmor-Frequenz) überlagert sich der ursprünglichen Bewegung des Elektrons und

• erzeugt einen zusätzlichen Strom Δi und ein zusätzliches magnetisches Moment $\Delta M = \mu_0 \cdot \Delta i \cdot F$, das dem Erregerfeld *H* entgegengerichtet ist (*Lenz*sche Regel).

• Die daraus resultierende Suszeptibilität ist

$$\chi_{v} = \frac{H'}{H} = \frac{\Delta M}{H \cdot V} = \chi_{v}^{dia}$$

Die diamagnetische Suszeptbilität χ^{dia} ist:

- negativ
- sehr klein
- unabhängig von H
- praktisch unabhängig von T

Bei genauen Bestimmungen von χ von paramagnetischen Stoffen müssen diamagnetische Anteile berücksichtigt werden.

Zum Beispiel ist bei Übergangsmetallkomplexen:

$$\chi_M = \chi_A + \sum \chi_L \qquad [\text{cm}^3 \text{Mol}^{-1}]$$

 χ_M : Mol - Suszeptibi lität des Komplexes (gemessen) χ_A : Grammatom - Suszeptibi lität des Zentralio ns χ_L : Mol - Suszeptibi lität des Liganden L

Zur Korrektur können χ^{dia} -Werte Tabellen (z.B. von Pascal) entnommen werden.

4.3 Paramagnetismus

Paramagnetimus resultiert aus der Wechselwirkung zwischen Magnetfeld und Orbital- bzw. Spinmoment ungepaarter Elektronen.

Beide Bewegungsarten eines Elektrons

a) fortschreitende Bewegung \rightarrow Bahndrehimpuls

b) Rotation um eigene Achse \rightarrow Eigendrehimpuls (Spin)

führen zu entsprechenden magnetischen Momenten.

Zu a) **Bahnmoment** $\vec{\mu}_1$

Bewegtes Elektron
$$\rightarrow$$
 Strom $i = \frac{\omega e}{2\pi}$

Der Strom erzeugt ein Magnetfeld <u>I</u> zur Ebene der Umlaufbahn.

Das daraus resultierende magnetische Moment der Orbitalbewegung des Elektrons ist

$$\left| \vec{\mu}_{l} \right| = (\mu_{0}) \cdot i \cdot F \qquad (\text{cgs-System})$$
$$= (\mu_{0}) \cdot \frac{e\omega}{2\pi} \cdot \pi \cdot \bar{r}^{2} \qquad (1)$$

Der Bahndrehimpuls ist

klassisch: $\vec{l} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$ bzw. mit $\vec{v} = \vec{\omega} \times \vec{r}$ $l = m\omega r^2$ (2) quantenmechanisch: $\left| \vec{l} \right| = \sqrt{l(l+1)}\hbar$ l = 0,1,2,... (3) l = Bahndrehimpulsquantenzahl

Aus (2)=(3) folgt
$$\omega r^2 = \sqrt{l(l+1)} \frac{h}{2\pi m}$$

Einsetzen in Gleichung (1) ergibt:

$$\mu_l = \frac{eh}{4\pi m} \sqrt{l(l+1)} = \mu_B \sqrt{l(l+1)}$$

Bohrsches Magneton:

$$\mu_{B} = \frac{eh}{4\pi m_{e}} = 9,27 \cdot 10^{-21} erg \cdot Oe^{-1} \quad (cgs)$$
$$= 9,27 \cdot 10^{-24} A \cdot m^{2} / Molekül \quad (SI)$$
$$= 9,27 \cdot 10^{-24} J \cdot T^{-1} \quad (SI)$$

In älterer Li teratur findet man :

 $\mu_{B} = \frac{eh}{4\pi m_{e}c} = 9,27 \cdot 10^{-21} erg \cdot Gauss^{-1} \quad \text{(elektrosta tische Einheiten)}$

Der Vektor $\bar{\mu}_l$ ist wegen der negativen Elektronenladung antiparallel zum Vektor \bar{l} gerichtet.

4.4 Curie-Gesetz

Einfachster Fall:

Molekül mit $S = \frac{1}{2}$ (ein ungepaartes Elektron; kein Bahnmoment) Magnetisches Moment: $\left| \vec{\mu}_{s} \right| = \frac{g_{s} \mu_{B} \vec{S}}{\hbar}$

Hamiltonian für die Wechselwirkung im Magnetfeld:

$$\hat{H} = -\vec{\mu}_{S} \cdot \vec{H} = \frac{g_{s} \cdot \mu_{B} \cdot S \cdot H}{\hbar}$$

Mit den Eigenwerten $(\vec{S} \| \vec{H})$

$$E = m_s g_s \mu_B H, \qquad m_s = \pm \frac{1}{2} \tag{1}$$

und der Energiedifferenz

z.B. H = 25 kGauss, g = 2.0023 (freies E.) $\longrightarrow \Delta E = 2,3 \text{ cm}^{-1}$, d.h. bei RT nahezu gleiche Population beider Zustände.

Das mikroskopische magnetische Moment eines Elektrons im Quantenzustand $|n\rangle$ ist gegeben durch

$$\mu_n = -\frac{\partial E_n}{\partial H} = -m_s g_s \mu_B \tag{2}$$

Das makroskopische magnetische Moment resultierend aus den Beiträgen aller besetzten Zustände von N_A (Avogadrosche Zahl) Molekülen ist

$$M = N_A \sum_n \mu_n \frac{\exp(-\frac{E_n}{kT})}{\sum_n \exp(-\frac{E_n}{kT})} = N_A \sum_n \mu_n P_n$$

P_n= Boltzmann-Faktor für die Wahrscheinlichkeit der Besetzung der n-Zustände im thermischen Gleichgewicht.

Für das $S = \frac{1}{2}$ -System mit (1) und (2):

$$M = N_{A} \cdot \frac{\sum_{m_{s}=-\frac{1}{2}}^{m_{s}=+\frac{1}{2}} \mu_{n} \exp(-\frac{E_{n}}{kT})}{\sum_{m_{s}=-\frac{1}{2}}^{m_{s}=+\frac{1}{2}} \sum_{m_{s}=-\frac{1}{2}}^{m_{s}=+\frac{1}{2}} \exp(-\frac{E_{n}}{kT})} = \frac{N_{A}g_{s}\mu_{B}}{2} \left[\frac{\exp(\frac{g_{s}\mu_{B}H}{2kT}) - \exp(\frac{-g_{s}\mu_{B}H}{2kT})}{\exp(\frac{g_{s}\mu_{B}H}{2kT}) + \exp(\frac{-g_{s}\mu_{B}H}{2kT})} \right]$$

Wenn $\frac{g_s \mu_B H}{kT} \ll 1$ d.h. kleine Multiplett-Aufspaltung, gilt die Näherung

$$\exp(\frac{\pm g_s \mu_B H}{2kT}) \approx 1 \pm \frac{g_s \mu_B H}{2kT}$$

gemäß der Reihenentwicklung für

$$e^{\pm x} = 1 \pm \frac{x}{1!} \pm \frac{x^2}{2!} \pm \frac{x^3}{3!} \pm \dots$$

und abbrechen nach dem 2. Glied!

amit erhält man für
$$M = \frac{N_A g_S \mu_B}{2} \cdot \left[\frac{g_S \mu_B H}{2kT}\right] = \frac{N_A g_S^2 \mu_B^2 H}{4kT}$$

und mit $\chi = \frac{M}{H}$

D

Das Curiesche Gesetz:

$$\chi = \frac{N_A g_S^2 \mu_B^2}{4kT}$$

Für Moleküle mit Spin $S \ge \frac{1}{2}$ und ohne Bahnmoment (L=0) erhält man allgemein:

$$\chi = \frac{N_A g^2 \mu_B^2}{3kT} S(S+1)$$

Für ÜM-Komplexe mit $S \neq 0, L \neq 0$ und schwacher Spin-Bahn-Kopplung (kleine J-Multiplettaufspaltung):

$$\chi = \frac{N_A \mu_B^2}{3kT} \left[L(L+1) + 4S(S+1) \right]$$

Bei starker Spin-Bahn-Kopplung (J-Multiplettaufspaltung >>kT) ist

$$\chi = \frac{N_A g_J^2 \mu_B^2}{3kT} J (J+1)$$
Paramagnetische Suszeptibilität

 χ^{para} ist

- klein
- parallel zum äußeren Feld H
- unabhängig von H
- T-abhängig

4.5 Kollektiver Magnetismus

Im Festkörper können Teilchen (Atome, Ionen) mit permanenten magnetischen Momenten untereinander wechselwirken (Spin-Spin-Wechselwirkungen) und damit das magnetische Verhalten der Materie bestimmen.

Keine Spin-Spin-Ww \rightarrow ungeordneter paramagnetischer Zustand

Antiparallel ausgerichtete Spins gleicher Größe: Antiferromagnetismus Untergitter A kompensiert Untergitter B Ferromagnetische Ordnung entlang der gestrichelten Linien

AB

<u>Ferrimagnetismus</u> verschiedene Fälle:

Antiparallel gerichtete Spins unterschiedlicher Größe für Untergitter A und B.

AB

Antiparallel gerichtete Spins gleicher Größe, aber Fehlstellen im A- oder B-Gitter.

Das Gesamtmoment von A kompensiert nicht dasjenige von B → resultierendes Moment

Spin-Glass

 T_N : Néel-Temperatur T_C : Curie-Temperatur

Das Curie-Weiss-Gesetz:

Das Curie-Gesetz liefert bei Auftragung von $1/\chi$ als Funktion der Temperatur eine Gerade, die durch den Achsenursprung geht. Oft erhält man experimentell eine Gerade, die die T-Achse bei T > 0 oder T < 0 schneidet. Den Achsenabschnitt auf der T-Achse nennt man Weiss'sche Konstante Θ . Die entsprechende Erweiterung des Curie-Gesetzes nennt man Curie-Weiss-Gesetz:

$$\chi = \frac{C}{T - \Theta}$$

 T_N : Néel-Temperatur T_C : Curie-Temperatur Θ : paramagnetische Curie-Temperatur, Weiss'sche Konstante

Die Ursache für das Auftreten der von Null verschiedenen Weiss'schen Konstante sind intermolekulare magnetische Wechselwirkungen. Es ist

 $\Theta > 0$ für ferromagnetische $\Theta < 0$ für antiferomagnetische Wechselwirkungen. Auftragung $\frac{1}{\chi}$ gegen T(K):

Nach Langevin gilt für die Molsuszeptibilität χ_{mol}

$$\chi_{mol} = \frac{N_A \mu_B^2 \mu_{eff}^2}{3kT}$$

Damit ist die Curie'sche Konstante

 $C = \frac{N_A \mu_B^2 \mu_{eff}^2}{3k}$

Das effektive magnetische Moment errechnet sich nach

$$\mu_{eff} = \left(\frac{3k}{N_A \mu_B^2}\right)^{\frac{1}{2}} \left(\chi_{mol} \cdot T\right)^{\frac{1}{2}} = \left(8 \cdot \chi_{mol} \cdot T\right)^{\frac{1}{2}} \quad [B.M.]$$

- N_A : Avogadro-Zahl
 - k : Boltzmann-Konstante
 - T : absolute Temperatur
- χ'_{mol} : um diamagnetische Anteile korrigierte Molsuszeptibilität
 - μ_B : Bohrsches Magneton

Bei $T \rightarrow 0$:

Im Ferromagneten ordnen sich "Weiss'sche Bezirke" (= Domänen parallelgerichteter Einzelspins):

```
\rightarrow \chi geht gegen \propto
```

Im Antiferromagneten wird die Antiparallelausrichtung der Einzelspins immmer perfekter:

 $\rightarrow \chi$ geht gegen 0

Bei T>T_C bzw. T>T_N:

Steigende Temperatur zerstört mehr und mehr die Ordnung: \rightarrow Verhalten paramagnetisch

Spin-Spin-Kopplungen intramolekular:

Spin-Spin-Wechselwirkungen nach dem Muster von Ferro-, Antiferro- bzw. Ferrimagnetismus kennt man auch in ÜM-Komplexen mit mehr als einem paramagnetischen Metallion.

Antiferromagnetische Kopplung erfolgt häufig über einen "Superaustausch"-Mechanismus. Z.B. NiO (oktaedrisch)

Experimentelle χ -Daten trägt man häufig als χT gegen T auf. Daraus läßt sich magnetisches Verhalten qualitativ erkennen:

4.6 Magnetische Eigenschaften von Komplexverbindungen4.6.1 Experimentelle Befunde

Die magnetische Suszeptibilität χ von Übergangsmetallverbindungen kann man mit verschiedenen Methoden gemessen werden:

- Faraday-Waage
- > SQUID-Magnetometer
- > FONER-Magnetometer
- AC-Suszeptometer

Daraus wird das effektive magnetische Moment μ_{eff} bestimmt.

 μ_{eff} -Werte hängen ab von

- Anzahl ungepaarter Elektronen
- Bahnmomentbeitrag im Grundzustand
- Beimischung von Bahnmoment höherer Zustände durch Spin-Bahn-Kopplung
- Stereochemie
 - (z.B. Unterscheidung oktaedrisch-tetraedrisch)

Experimentell bestimmte μ_{eff} -Werte vergleicht man mit theoretisch zu erwartenden Momentwerten:

Allgemein gilt für das magnetische Moment eines Übergangsmetallkomplexes bei schwacher Spin-Bahn-Kopplung und kubischer Symmetrie (O_h, T_d) :

$$\mu = \sqrt{4S(S+1) + L(L+1)} \ \mu_B$$

Häufig ist das Bahnmoment durch niedrigsymmetrisches Ligandenfeld (axiale Störung) unterdrückt (L = 0). Dann erwartet man das "reine Spinmoment" (Spin-only moment).

$$\mu_{S} = \sqrt{4S(S+1)} \ \mu_{B}$$

Mit n = 2S = Zahl der ungepaarten Elektronen erhält man den äquivalenten Ausdruck

$$\mu_{\rm S} = \sqrt{n(n+2)} \ \mu_{\rm B}$$

Ion	Anzahl der d-Elek- tronen	magnetisch normale Komplexe (high spin)			magnetisch anomale Komplexe (low spin)			
		Zahl der ungepaarten Elektronen	Spin- Moment (theor.)[B.M].	experimentelle Momentwerte [B.M.]	Zahl der ungepaarten Elektronen	Spin- Moment (theor.)[B.M.]	experimentelle Momentwerte [B.M.]	
Ti ³⁺	1	1	1,73	1,65-1,79				
V^{4+}				1,68-1,78				
V3+	2	2	2,83	2,75 - 2,85				
V^{2+}				3,80-3,90				
Cr ³⁺	3	3	3,87	3,70-3,90				
Mn^{4+}				3,8 -4,0				
Cr ²⁺		4	4,90	4,75-4,90	2	9 9 9	3,20 - 3,30	
Mn ³⁺	4			4,90-5,00	2	2,00	3,18	
Mn ²⁺			F 0.0	5,65-6,10	1	1 79	1,80-2,10	
Fe ³⁺	5	ð .	5,92	5,70-6,0	1	1,75	2,0 - 2,5	
Fe ²⁺		4	4,90	5,10-5,70	0	0	diamagn.	
Co ³⁺	0			4,3	0		diamagn.	
Co ²⁺	_	3	3,87	4,30-5,20	1	1 7 9	1,8	
Ni ³⁺	7				1	1,75	1,8 - 2,0	
Ni ²⁺	8	2	2,83	2,80-3,50	0	0	diamagn.	
Cu ²⁺	9	1	1,73	1,70 - 2,20				

Tabelle A. 13.Übersicht über magnetische Momente von Komplexverbindungen mit Zentralionen
der ersten Übergangsmetallreihe

4.6.2 Deutung des magnetischen Verhaltens von Übergangsmetall-Komplexen nach der Ligandenfeldtheorie

Darstellung im Einelektronenschema (Starkfeldnäherung)

Die Besetzung der t_{2g} - und e_g -Orbitale mit *d*-Elektronen ist eindeutig bei oktaedrischen Komlexverbindungen mit 1, 2, 3, 8, 9 *d*-Elektronen.

Bei oktaedrischen Komplexen von 3d-Elektronen mit der Konfiguration d^4 , d^5 , d^6 und d^7 gibt es – je nach der Stärke des Ligandenfeldes – zwei Möglichkeiten der Elektronenanordnung. Beispiel d^6 -Komplexe:

Oktaedrische Komplexe mit schwachem Ligandenfeld:

 $\Delta_{okt.} < \pi$ (mittlere Spinpaarungsenergie)

High-Spin-Komplexe (magnetisch normale Komplexe)

Oktaedrische Komplexe mit starkem Ligandenfeld:

 $\Delta_{okt.} > \pi$ *Low-Spin-Komplexe* (magnetisch anomale Komplexe)

Beispiele: d^4 : High-Spin-Komplex: $[Mn(H_2O)_6]^{3+}; \mu_{eff} (exp.) = 4,9 \text{ B.M.}$ $\Delta_{okt.} \sim 21\ 000 \text{ cm}^{-1}; \pi \approx 28\ 000 \text{ cm}^{-1};$

Low-Spin-Komplex: $K_3[Mn(CN)_6]; \mu_{eff} (exp.) = 3,5 \text{ B.M.}$ $\Delta_{okt.} > 30\ 000 \text{ cm}^{-1}; \pi \approx 28\ 000 \text{ cm}^{-1};$

d^{5} : (NH₄)Fe(SO₄)₂·12H₂O ([Fe(H₂O)₆]³⁺)

 $\mu_{eff} (exp.) = 5,9 \text{ B.M. (Raumtemperatur)}$ $\Delta_{okt.} \approx 13 700 \text{ cm}^{-1};$ $\pi \approx 30 000 \text{ cm}^{-1};$ \longrightarrow High-Spin-Komplex

$K_3[Fe(CN)_6]$

 μ_{eff} (exp.) = 2,25 B.M. (Raumtemperatur) $\Delta_{okt.} > 30\ 000\ cm^{-1};$ $\pi \approx 30\ 000\ cm^{-1};$

Low-Spin-Komplex

d^{7} : CoSO₄·7H₂O ([Co(H₂O)₆]²⁺)

$K_4[Co(CN)_6]$ ·3 H_2O

 μ_{eff} (exp.) = 1,88 B.M. (Raumtemperatur)

Oktaedrische Komplexe der schweren Übergangsmetall-Ionen (4. und 5. Übergangsmetallreihe) sind fast ausnahmslos Low-Spin-Komplexe, da beim ΔU bergang zu höheren Homologen beträchtlich zunimmt.

Tetraedrische Komplexe:

Für Übergangsmetall-Ionen mit 1, 2, 7, 8, 9 *d*-Elektronen im tertraedrischen Feld ist prinzipiell nur High-Spin-Charakter möglich.

Komplexe mit 3, 4, 5, 6 *d*-Elektronen können im tetraedrischen Feld prinzipiell High-Spin- oder Low-Spin-Charakter haben.

In der Praxis sind tetraedrische Komplexverbindungen der ersten Übergangsmetall-Reihe ausnahmslos High-Spin-Komplexe, da die Ligandenfeldstärke hier durchweg kleiner ist als die mittlere Spinpaarungsenergie. Tetraedrische Low-Spin-Komplexe sind nur von Komplexen mit höheren Übergangsmetall-Ionen (4d, 5d) bekannt.

Planare Komplexe:

Am häufigsten sind *d*⁸-Komplexe. Hier können High-Spin- und Low-Spin-Charakter auftreten.

In der Praxis sind planare Komplexe der *d*⁸-Ionen, Ni(II), Pd(II), Ir(I), Au(III), alle diamagnetisch.

Bahnmomentbeitrag zum magnetischen Moment

Die Methode der "Schwachfeld-Näherung" lässt erkennen, in welchen Fällen Bahnmomentbeitrag zu erwarten ist.

Allgemein: Ein Elektron besitzt bezüglich einer Achse einen Bahndrehimpuls $(L \neq 0)$ und somit ein magnetisches Bahnmoment, wenn seine Orbitalfunktion durch Drehung um die betreffende Achse in eine vollständig äquivalente Funktion übergeht bezüglich

nur möglich für

90°

m 7 - Ac

Tabelle A. 17.Zu erwartende Bahnmomentbeiträge zum magnetischen Moment
bei oktaedrischen und tetraedrischen Komplexen mit Zentralionen
der Konfigurationen d^1 bis d^9

(schraffiert = Bahnmomentbeitrag zu erwarten).

S m	ym- etrie	d^1	d^2	d^{3} .	d^4	d^5	d^6	d^7	d^8	d^9
O _h	high spin	${de^1\over {}^2T_{2g}}$	${darepsilon^2\over {}^3T_{1g}}$	$d \varepsilon^3 \ {}^4A_{2g}$	$d \epsilon^3 d \gamma \ {}^{5}E_{g}$	${d arepsilon^3 d \gamma^2 \over {}^6\!A_{1g}}$	${d \epsilon^4 d \gamma^2 \over {}^5 T_{2g}}$	${darepsilon^5 d\gamma^2\over {}^4T_{1g}}$	${darepsilon^6 d\gamma^2\over {}^3\!A_{2g}}$	${darepsilon^6 d\gamma^3\over {}^2E_g}$
	low spin				${de^4\over {}^3T_{1g}}$	$d arepsilon^5 \ {}^2T_{2g}$	$d \varepsilon^6 {}^{1}A_{1g}$	${d \varepsilon^6 d \gamma^1 \over {}^2 E_g}$		
T_d	high spin	${d\gamma^1\over {}^2E}$	$d\gamma^2 \ {}^{3}A_2$	$d\gamma^2 darepsilon \ ^4T_1$	${d\gamma^2 darepsilon^2 \over {}^5 T_2}$	$d\gamma^2 d\varepsilon^3 \over {}^6A_1$	$d\gamma^3 d\varepsilon^3 _{5E}$	${d\gamma^4 darepsilon^3\over {}^4\!A_2}$	$d\gamma^4 darepsilon^4 \ {}^3T_1$	$d\gamma^4 darepsilon^5 \ ^2T_2$
	low spin			${d\gamma^3\over {}^2E}$	$d\gamma^4 \ {}^1\!A_1$	$d\gamma^4 darepsilon^1 \ {}^2T_2$	${d\gamma^4 darepsilon^2\over {}^3T_1}$			

Aus dem **Bahnmomentbeitrag** zum experimentell bestimmten magnetischen Moment kann auf die **Stereochemie** geschlossen werden.

Beispiele für Auftreten bzw. Ausbleiben von Bahnmomentbeitrag:

Abb. A.74. Zur Diskussion des Bahnmomentbeitrages zum magnetischen Moment. Aufspaltungsbilder von *D*- und *F*-Zuständen in kubischen Feldern mit überlagerter kleiner rhombischer Feldkomponente (schematisch). **Experimentell bestimmte Momentwerte** für einige oktaedrische und tetraedrische magnetisch normale **Co²⁺-Verbindungen**

Tabelle A. 18. Magnetische Momentwerte oktaedrischer und tetraedrischer magnetisch normaler Cobalt (II)-Komplexe nach NYHOLM [20].

Oktaedrischer Komple	эx	Tetraedrischer Komplex		
Formel	μ _{eff.} [B.M.]	Formel	μ _{eff.} [B.M.]	
$\begin{array}{l} [{\rm Co}({\rm H}_{2}{\rm O})_{6}]{\rm Cl}_{2} \\ [{\rm Co}({\rm H}_{2}{\rm O})_{6}]({\rm ClO}_{4})_{2} \cdot 6{\rm H}_{2}{\rm O} \\ [{\rm Co}({\rm NH}_{3})_{6}]({\rm ClO}_{4})_{2} \\ [{\rm Co}({\rm py})_{6}]({\rm ClO}_{4})_{2} \\ [{\rm Co}({\rm dipy})_{3}]({\rm ClO}_{4})_{2} \end{array}$	4,94 4,93 5,04 4,87 4,86	$(pyH)_{2}[CoCl_{4}]$ $(pyH)_{2}[CoBr_{4}]$ $Hg[Co(SCN)_{4}]$ $[CoCl_{2}, 2(C_{2}H_{5})_{3}P]$ $[CoCl_{2}(py)_{2}]$ (blau)	$\begin{array}{r} 4,74\\ 4,67\\ 4,33\\ 4,48\\ 4,62\end{array}$	

Wir stellen fest:

1. merklicher Bahnmomentbeitrag bei oktaedrischen Komplexen

$$\mu_{Spin} = \sqrt{n(n+2)}\mu_{B} = \sqrt{3(3+2)}\mu_{B} = 3,87\,\mu_{B}$$

2. tetraedrische Co²⁺-Komplexe sollten keinen Bahnmomentbeitrag haben

 μ_{eff} -Werte sind tatsächlich niedriger als bei oktaedrischen Komplexen, aber höher als gemäß $\mu_S = \sqrt{4S(S+1)} = 3,87 B.M$.

Grund: Spin-Bahn-Kopplung

Spin-Bahn-Kopplung \longmapsto Wechselwirkung mit höheren Zuständen. Dadurch Bahnmomentbeitrag in den Grundzustand gemischt. Daraus ergibt sich das Moment zu: $\mu = \mu_S (1 - \alpha \frac{\lambda}{\Delta})$

 μ_S : reines Spinmoment

 Δ : Energieabstand zwischen den wechselwirkenden Zuständen

 α : Konstante

 λ : Spin-Bahn-Kopplungs-Konstante

 $\lambda > 0$: erste Hälfte der Übergangsmetall-Reihe

 $\lambda < 0$: zweite Hälfte der Übergangsmetall-Reihe Erhöhung der μ_{eff} -Werte für tetraedrische Co²⁺-Verbindungen.

5. Wichtige gruppentheoretische Hilfsmittel

Literatur: F. A. Cotton: "Chemical Applications of Group Theory" 3. Auflage, John Wiley & Sons, New York 1990

5.1 Symmetrieelemente, Symmetrieoperationen

Symmetrieelemente: Zur Beschreibung der Molekülsymmetrie

- Symmetrieebene, σ
- Symmetriezentrum, *i*
- Drehachse, C_n
- Drehachspiegelungsachse, S_n (n = Zähligkeit der Drehachse)

Symmetrieoperationen:

- Ê <u>Identische Operation</u> belässt das Molekül in seiner ursprünglichen Lage
- $\hat{\mathbf{C}}_{\mathbf{n}}$ Drehung um Winkel $2\pi/n$

z.B.

$$\hat{C}_{3} = \text{Drehung um } 2\pi/3 = 120^{\circ}$$

$$\hat{C}_{3}^{2} = \hat{C}_{3} \cdot \hat{C}_{3} \text{ : Drehung um } 240^{\circ}$$

$$\hat{C}_{3}^{3} = \hat{E}$$

Allgemein: $\hat{C}_n^n = \hat{E}$ $C_{n(max)} = Molekülachse (Achse größter Zähligkeit)$ $\hat{\sigma}$: Spiegelung an einer Symmetrieebene

3 Fälle:
$$\hat{\sigma}_{h}$$
: Symmetrieebene $\perp C_{n(max)}$

$$\hat{\sigma}_{v}$$
: Symmetrieebene enthält $C_{n(max)}$

 $\hat{\sigma}_{d}$: Symmetrieebene enthält $C_{n(max)}$ und halbiert den Winkel zwischen zwei C_{2} -Achsen $\perp C_{n(max)}$

\hat{s}_n : Drehspiegelung

= Drehung um den Winkel $2\pi/n$ um C_n und anschließend Spiegelung an der Ebene $\perp S_n$: $\hat{S}_n = \hat{C}_n \hat{\sigma}_v$

z.B. reguläres Tetraeder

<u>Beachte:</u> Im regulären Tetraeder sind die drei C_2 -Achsen gleichzeitig S_4 -Achsen!

Merke:

- a) Es gibt <u>mehr</u> Symmetrieoperationen als Symmetrieelementeb) Die Symmetrieoperationen sind die "Elemente einer Gruppe im
 - mathematischen Sinne" d.h. erfüllen die Eigenschaften einer Gruppe:
I) Das "Produkt" (einer Verknüpfung) ist im allgemeinen <u>nicht kommutativ</u>: $\hat{A}\hat{B} \neq \hat{B}\hat{A}$ <u>Falls $\hat{A}\hat{B} = \hat{B}\hat{A}$ </u>, dann liegt eine Abel'sche Gruppe vor.

II) Die Menge (Gruppe) $\{\hat{R}_i,...\}$ enthält das Einheitselement \hat{E} : $\hat{E}\hat{X} = \hat{X}\hat{E} = \hat{X}, \quad \hat{X} \in \{\hat{R}_i,...\}$

III) Für alle $\hat{\mathbf{R}}_{i}$ einer Gruppe gilt das <u>assoziative Gesetz:</u> $\hat{\mathbf{A}}(\hat{\mathbf{B}}\hat{\mathbf{C}}) = (\hat{\mathbf{A}}\hat{\mathbf{B}})\hat{\mathbf{C}}$

IV) Zu jedem Element $\hat{\mathbf{X}}$ einer Gruppe existiert ein reziprokes Element $\hat{\mathbf{X}}^{-1}$. $\hat{\mathbf{X}} \ \hat{\mathbf{X}}^{-1} = \hat{\mathbf{E}}$

V) Ordnung der Gruppe h = Anzahl der Elemente in einer Gruppe

5.2 Symmetriegruppen (Punktgruppen)

Unterscheidung zwischen:

a) **Punktgruppe**:

Alle Symmetrieelemente eines Moleküls schneiden sich in einem <u>gemeinsamen Punkt</u>, der durch keine Symmetrieoperation verlagert wird.

b) Raumgruppe:

Enthalten Symmetrieoperationen, die Translation bewirken (Kristallographie!).

Wichtige Symmetriegruppen:

Kugeldrehspiegelungsgruppe R₃₁

= Symmetrie der Kugel, enthält ∞ viele C_n-Achsen

 ∞ viele S_n-Achsen

 ∞ viele Spiegelebenen

und ein Inversionszentrum

Die in der Ligandenfeldtheorie auftretenden Symmetriegruppen sind Untergruppen von R_{3i} z.B:

- Reguläres Oktaeder: O_h z.B. [MA₆]-Komplex
- kubisch
- Reguläres Oktaeder: T_d z.B. [MA₄]-Komplex
- Tetragonal gleichmäßig gestrecktes oder gestauchtes Oktaeder, z.B.
 [MA₆] Jahn-Teller verzerrt oder *trans*-[MA₄B₂]
 oder [MA₄] quadratisch-planar.
- D_{4h} (tetragonale Symmetrie)

• Rhombisch gestörtes Oktaeder z.B. [M(A^A)₂B₂]-Komplex

 Tetragonal ungleichmäßig gestörtes Oktaeder, z.B.
 [MA₅B]-Komplex

• *cis*- [MA₃B₃] (,,facial")

 C_{4v}

 D_3

Fließschema zur Ermittlung der Punktgruppe eines Moleküls:

Abb. B.9. Reguläres Oktaeder und Würfel, Symmetrie O_h . , \blacktriangle , \blacksquare sind Symbole für zwei-, drei- bzw. vierzählige Drehachsen.

Abb. B. 10. Längs der z-Achse gleichmäßig gestrecktes Oktaeder, Symmetrie D_{4h} . und sind Symbole für zwei- bzw. vierzählige Drehachsen.

Abb. B.12. Reguläres Tetraeder, Symmetrie T_d . und \triangle sind Symbole für zwei- bzw. dreizählige Drehachsen.

5.3 Darstellungen von Gruppen

5.3.1 Symmetrieoperationen in Matrixschreibweise

Beispiel: Geometrische Transformation eines Vektors $\vec{r}(x, y, z)$

Identitätsoperation:

$$\hat{E} \vec{r}(x, y, z) = \vec{r}(x, y, z)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

 $\mathbb{I}(\hat{E}) = ,, \text{Einheitsmatrix'' mit } \chi(\hat{E}) = 3$

 χ = "Charakter" = Summe der Diagonalelemente in der Transformationsmatrix

$$\sum \Gamma_{ii} = \chi(\hat{\mathbf{R}}); \hat{\mathbf{R}} = \text{Operation}$$

Spiegelungen:

 $\hat{\sigma}(xy): \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}; \qquad \chi(\hat{\sigma}) = 1$ $\left\| \prod (\hat{\sigma}(\mathbf{x}\mathbf{y})) \right\| = \text{Transformationsmatrix}$ $\hat{\sigma}(xz): \begin{array}{ccccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ \end{array} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{bmatrix} x \\ -y \\ z \\ \end{vmatrix};$ $\chi(\hat{\sigma}) \!=\! 1$ $\mathbb{I}(\hat{\sigma}(\mathbf{x}\mathbf{z}))$ $\hat{\sigma}(yz): \begin{array}{cccc} (-1 & 0 & 0) & (x) & (-x) \\ 0 & 1 & 0 & y & = (y) \\ 0 & 0 & 1 & z & z \end{array};$ $\chi(\hat{\sigma}) = 1$ $\mathbb{I}(\hat{\sigma}(yz))$

Alle Spiegelungen haben den gleichen Charakter; sie bilden eine <u>"Klasse"</u> von Symmetrieoperationen

Inversion:

$$\hat{i}\vec{r}(x, y, z) = (-x, -y, -z)$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}; \qquad \chi(\hat{i}) = -3$$

Drehungen:

z.B. um die z-Achse: z-Koordinate bleibt unverändert

Die Transformationsmatrix ist vom Typ
$$\begin{pmatrix} . & . & 0 \\ . & . & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Zur Auffindung der Matrixelemente in der xy-Ebene:

$$C_{\beta}\vec{r}(x, y, z) = \vec{r}'(x', y', z')$$
$$x = r \cos\varphi$$
$$y = r \sin\varphi$$
$$x' = r \cos(\varphi + \beta)$$
$$y' = r \sin(\varphi + \beta)$$

Mit den Additionstheoremen

$$\cos (\varphi + \beta) = \cos \varphi \cos \beta - \sin \varphi \sin \beta$$
$$\sin (\varphi + \beta) = \sin \varphi \cos \beta + \cos \varphi \sin \beta$$

erhält man:

$$x' = r \cdot \cos \varphi \cos \beta - r \cdot \sin \varphi \sin \beta$$
$$x = x \cdot \cos \beta - y \cdot \sin \beta$$
$$y' = r \cdot \sin \varphi \cos \beta + r \cdot \cos \varphi \sin \beta$$
$$y = x \cdot \sin \beta + y \cdot \cos \beta$$

In Matrixschreibweise:

$$\hat{\mathbf{C}}_{\beta}\vec{\mathbf{r}}(\mathbf{x},\mathbf{y},\mathbf{z}) = \begin{bmatrix} \cos\beta & -\sin\beta & 0\\ \sin\beta & \cos\beta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix}$$
$$\prod \left(\hat{\mathbf{C}}_{\beta} \right) \operatorname{mit} \chi(\hat{\mathbf{C}}_{\beta}) = 2 \cdot \cos\beta + 1$$

Allgemein:

Bei Transformation eines n-dimensionalen Basissatzes von Vektoren oder Funktionen $(\vec{r_1}, \vec{r_2}, ..., \vec{r_n})$ bzw. $(\psi_1, \psi_2, ..., \psi_n)$, z.B. die 5d-Orbitale mit der Symmetrieoperation \hat{R} , ist

$$\hat{R}\vec{r}_{1} = \vec{r}_{1}' = \Gamma(\hat{R})_{1,1}\vec{r}_{1} + \Gamma(\hat{R})_{1,2}\vec{r}_{2} + \dots + \Gamma(\hat{R})_{1,n}\vec{r}_{n}$$

$$\hat{R}\vec{r}_{2} = \vec{r}_{2}' = \Gamma(\hat{R})_{2,1}\vec{r}_{1} + \Gamma(\hat{R})_{2,2}\vec{r}_{2} + \dots + \Gamma(\hat{R})_{2,n}\vec{r}_{n}$$

$$\hat{R}\vec{r}_{n} = \vec{r}_{n}' = \Gamma(\hat{R})_{n,1}\vec{r}_{1} + \Gamma(\hat{R})_{n,2}\vec{r}_{2} + \dots + \Gamma(\hat{R})_{n,n}\vec{r}_{n}$$

$$\hat{R}\vec{r}_{i} = \vec{r}_{i}' = \sum_{j=1}^{n}\Gamma(\hat{R})_{i,j}\vec{r}_{j} \quad i = 1, 2, ..., n$$

bzw.

 $\Gamma(\hat{R})_{i,j}$: Zahlen, die von der jeweiligen Symmetrieoperation \hat{R} abhängen

Die Transformationsgleichungen in Matrixschreibweise:

$$\begin{split} \begin{pmatrix} \Gamma(\hat{R})_{1,1} & \Gamma(\hat{R})_{1,2} & \dots & \Gamma(\hat{R})_{1,n} \\ \Gamma(\hat{R})_{2,1} & \Gamma(\hat{R})_{2,2} & \dots & \Gamma(\hat{R})_{2,n} \\ \dots & & \dots & \\ \Gamma(\hat{R})_{n,1} & \Gamma(\hat{R})_{n,2} & \dots & \Gamma(\hat{R})_{n,n} \end{pmatrix} \begin{pmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vdots \\ \vdots \\ \vec{r}_2 \\ \vdots \\ \vdots \\ \vdots \\ \vec{r}_n \end{pmatrix} = \begin{pmatrix} \vec{r}_1' \\ \vec{r}_2' \\ \vdots \\ \vec{r}_n \end{pmatrix} \\ \\ \tilde{r}_n \end{pmatrix} \end{split}$$

Die Transformationsmatrix ist n-dimensional wie die transformierte Basis.

5.3.2 Sätze über Darstellungen

I) Eine Menge (quadratischer) Matrizen $\mathbb{T}(P)$, $\mathbb{T}(R)$, $\mathbb{T}(Q)$,..... die sich den Elementen P, Q, R,... einer Gruppe so zuordnen lassen, dass jedem Produkt zweier Gruppenelemente das Produkt der zugeordneten Matrizen entspricht,

$$PQ = R \quad \longrightarrow \quad \mathbb{T}(P) \quad \mathbb{T}(R) = \mathbb{T}(Q)$$

nennt man eine **Darstellung** III der Gruppe.

II) Eine Darstellung hat die Dimension n, wenn die zugehörenden Matrizen n Zeilen und n Spalten (= Dimension des Basissatzes) besitzen. III) Alle Transformationsmatrizen einer Darstellung haben die gleiche Dimension. (ansonsten wäre Matrixmultiplikation entsprechend der Verknüpfung von Symmetrieoperationen nicht möglich).

IV) Eindimensionale Darstellungen, deren Matrizen gleich eins sind, heißen "identisch" oder "totalsymmetrisch"

V) Zwei Darstellungen \mathbb{I} und \mathbb{I} , zwischen deren Transformationsmatrizen $\mathbb{I}(\mathbf{R})$ und $\mathbb{I}(\mathbf{R})$ eine Beziehung

$$\mathbb{I}(\mathbf{R}) = \mathbf{S} \mathbb{I}(\mathbf{R}) \mathbf{S}^{-1} \qquad \text{(für alle R)}$$

("Ähnlichkeitstransformation") besteht, heißen "äquivalente" Darstellungen

VI) Die Summe der Diagonalelemente $\Gamma_{ii}(R)$ einer Transformationsmatrix $\prod (R)$ heißt "Charakter" der Transformationsmatrix. Die Gesamtheit der zu einer Darstellung \prod gehörenden Charaktere $\chi(\prod(R))$, $\chi(\prod(R))$, heißt "Charakterensystem" der Darstellung.

VII) Äquivalente Darstellungen haben gleiche Charakterensysteme.

VIII) Eine Darstellung ist reduzibel, wenn es eine Ähnlichkeitstransformation gibt, durch die alle Matrizen dieser Darstellung in die gleiche blockdiagonalisierte Form zerfällt:

$$\Gamma(P) = \begin{pmatrix} \Gamma_1(P) & 0 \\ \Gamma_2(P) & \\ 0 & \Gamma_1(P) \\ 0 & \Gamma_1(P) \\ \end{pmatrix}, \quad \Gamma(P) = \begin{pmatrix} \Gamma_1(Q) & 0 \\ \Gamma_2(Q) \\ 0 & \Gamma_1(Q) \\ \end{pmatrix}$$

quadratische Untermatrizen längs der Diagonalen

Eine Darstellung \prod zerfällt dann in die Darstellungen $\prod_1, \prod_2, \prod_3, ...$ mit niedrigerer Dimension.

$$\blacksquare = \blacksquare_1 + \blacksquare_2 + \blacksquare_3 \dots$$

wobei \mathbb{I}_{i} : $\mathbb{I}_{i}(P)$, $\mathbb{I}_{i}(Q)$, ...

5.4 Charakterentafel

Die Charaktere der irreduziblen Darstellungen einer Gruppe werden in der **Charakterentafel** zusammengefasst.

<u>Beispiel:</u> C_{3v} (NH₃, BF₃)

Feld II: Irreduzible Darstellungen mit Mulliken-Bezeichnung

A: eindimensionale irreduzible Darstellung mit $\chi(\hat{C}_n) = 1$, d.h. symmetrisch bezüglich Drehung um $2\pi/n$ um C_n (Hauptachse)

B: eindimensionale irreduzible Darstellung mit $\chi(\hat{C}_n) = -1$, d.h. antisymmetrisch bezüglich Drehung um $2\pi/n$

E: zweidimensionale irreduzible Darstellung

T (F): dreidimensionale irreduzible Darstellung

Indizes 1,2: Unterscheidung von irreduziblen Darstellungen gleicher Dimension

Index 1: symmetrisch bezüglich $C_2 \perp C_{n_{max}}$, bzw. bezüglich $\sigma_v \perp C_{n_{max}}$ (falls C_2 fehlt)

Index 2: antisymmetrisch bezüglich $C_2 \perp C_{n_{max}}$, bzw. bezüglich $\sigma_v \perp \overline{C_{n_{max}}}$

Beistriche ', '': Unterscheidung bezüglich σ_h : ': falls $\blacksquare_{irred.}$ symmetrisch '': falls $\blacksquare_{irred.}$ antisymmetrisch

Indizes g, u: Unterscheidung bezüglich Inversion \hat{i} . Falls i vorhanden, erscheint jede \prod_{irred} zweimal, mit g: gerade, falls \prod_{irred} symmetrisch bezüglich Inversionszentrum i u: ungerade, falls \prod_{irred} antisymmetrisch bezüglich Inversionszentrum i

Felder III und IV:

zeigen, nach welchen irreduziblen Darstellungen die Atomorbitale bzw. Rotationen R (Mikrowellenspektroskopie) transformieren.

- Beispiel: Orbitale des P in $PCl_3(C_{3v})$
 - $A_1: s, p_z, d_{z^2}$

Jedes Atomorbital für sich bildet eine (eindimensionale) Basis zur irreduziblen Darstellung A_1

(das s-Orbital besitzt keine Winkelabhängigkeit, transformiert deshalb immer nach der totalsymmetrischen Darstellung A_1)

- A_2 : keine Atomorbitale besitzen A_2 -Symmetrie
- E: $(p_x, p_y), (x^2-y^2, xy), (xz, yz)$. Jede dieser 3 zweidimensionalen Basen transformiert nach der irreduziblen Darstellung E.

Beispiel: Tetraedrische Moleküle

Charakterentafel für T_d-Symmetrie

T _d	E	8C ₃	$3\sigma_2$	$6S_4$	бо _d		
A ₁	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(z^2, x^2 - y^2)$
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	$(\mathbf{x}, \mathbf{y}, \mathbf{z})$	(xy, xz, yz)

a) CH₄

nur s- und p-Orbitale am zentralen C-Atom gehen in σ -Bindung ein

 A_1 : s

Das s-Orbital ist total symmetrisch und bildet eine eindimensionale Basis zur irreduziblen Darstellung A_1

 $T_2: (p_x, p_y, p_z)$

Die drei p-Orbitale des C-Atoms bilden eine dreidimensionale Basis zur irreduziblen Darstellung T₂

b) Tetraedrische ÜM-Komplexe s-, p- und d- Orbitale am Zentralion sind an σ -Molekülorbitalen beteiligt

A₁: s E: $(d_{z^2}, d_{x^2-y^2})$ T₂: $(p_x, p_y, p_z), (d_{xy}, d_{xz}, d_{yz})$

Durch Symmetrieklassifizierung mit Anwendung der Reduktionsformel findet man, dass die Orbitale mit E- und T₂-Symmetrie auch für π -Bindungen zur Verfügung stehen.

5.5 Reduktionsformel

Häufig vorkommende Probleme sind:

- a) Symmetrieklassifizierung von Atomorbitalen (z.B. Metall- und Ligandenorbitalen in Übergangsmetallkomplexen) für die Bildung von Molekülorbitalen.
- b) Termaufspaltung bei Symmetrieerniedrigung (z.B. Ligandensubstitution, Jahn-Teller-Verzerrung) in Komplexverbindungen.

Verfahren: Mit Hilfe der "Reduktionsformel" wird festgestellt,

Zu a) nach welchen irreduziblen Darstellungen eine gegebene Basis (z.B. die p-Orbitale, p_x, p_y, p_z oder die fünf d-Orbitale) unter bestimmter Symmetrie transformiert;

Zu b) in welche irreduziblen Darstellungen eine gegebene Darstellung bei einer bestimmten Symmetrieerniedrigung (z.B. von O_h nach D_{4h}) zerfällt. Das Resultat beschreibt die gesuchte Termaufspaltung.

Reduktionsformel

 $n_{\mathbb{I}_{i}} = \frac{1}{h} \sum_{\hat{p}} \chi_{\mathbb{I}_{i}}(\hat{R}) \chi_{\mathbb{I}_{i}}(\hat{R})$

Summe über alle Symmetrieoperationen $\hat{\mathbf{R}}$

5.5.1 Beispiel: Aufspaltung von entarteten Ligandenfeld-Termen bei Symmetrieerniedrigung

Wir betrachten die Symmetrieerniedrigung

Irreduzible Darstellungen der Symmetriegruppe O_h werden bei Symmetrieerniedrigung gegebenenfalls reduzibel. Durch Anwendung der Reduktionsformel ist zu prüfen, welche irreduziblen Darstellungen bei Symmetrieerniedrigung nach D_{4h} daraus hervorgehen:

$$\begin{array}{ccc} 2S+1 & & & \\ & & & \\ \hline & & \\ \hline & & \\ \hline & \\ eduzible \ Darstellung & & \\ unter \ O_h & & \\ \end{array} \begin{array}{ccc} 2S+1 & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ irreduzible \ Darstellung en \\ unter \ D_{4h} & \\ \end{array}$$

Konkretes Beispiel:

Anzahl und Symmetriebezeichnungen der Spaltterme?

Verfahrensweise für

 $\mathbb{I}_{1}(D_{4h}) \stackrel{\cdot}{+} \mathbb{I}_{2}(D_{4h}) \stackrel{\cdot}{+} \dots$ $T_{2g}(O_h)$ Symmetrieerniedrigung nach D_{4h}
1. Schritt:

Feststellen, welche Symmetrieelemente die Gruppen O_h und D_{4h} gemeinsam haben und aus welchen Klassen von Symmetrieoperationen unter O_h die Klassen von D_{4h} hervorgehen (s. dazu Abb. B.9 und B.10)

 D_{4h}

Symmetrieoperationen für

 $O_{h} (h = 48)$ $D_{4h}(h = 16)$ E E $3C_2$ $2C'_2$ $6C_4$ $2C_4$ 2C"₂ 6C′₂ 1 1 $iC_2 = \sigma_h$ $2iC'_2 = 2\sigma_v$ $3iC_2$ $2iC_4 = 2S_4$ $6iC_4$ $6iC'_2$ \longrightarrow 2iC"₂ = 2 σ_d

Merke: C_3 -Operationen treten unter D_{4h} nicht mehr auf. Aus diesem Grund sind die 8 C_3 -Operationen und die 8 iC_3 -Operationen in der Liste unter O_h (h = 48) nicht aufgeführt.

2. Schritt:

Für diese Klassen von D_{4h} das Charakterensystem von $T_{2g}(O_h)$ aus der Charakterentafel für O_h aufschreiben:

0 _h	E	8 <i>C</i> 3	3 <i>C</i> ₂	6 <i>C</i> 4	$6C'_2$	i	$8iC_3$	$3iC_2$	$6iC_4$	$6iC_2'$	
A1g	1	1	1	1	1	1	1	1	1	1	Γ1
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
A_{2g}	1	1	1	-1	-1	1	1	1	-1	1	Γ_2
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	
Eg	2	-1	2	0	0	2	-1	2	0	0	Γ ₃
Eu	2	-1	2	. 0	Q	-2	1	-2	0	0	
T_{1g}	3	0	-1	1	-1	3	0	-1	· 1	-1	Γ4
T _{1u}	3	0	-1	1	-1	-3	0	1	-1	1	
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1 .	Γ_5
T _{2u}	3	0	-1	-1	1	-3	0	1	1	-1	

Da C₃-Operationen unter D_{4h} nicht mehr existieren, lautet das Charakterensystem von $T_{2g}(O_h)$ für die Klassen von D_{4h} :

3. Schritt:

Mit Hilfe der Reduktionsformel und unter Verwendung der Charakterentafel für D_{4h} prüfen, ob die Darstellung $T_{2g}(O_h)$ bei Symmetrieerniedrigung nach D_{4h} reduzibel ist und, falls ja, welche irreduziblen Darstellungen der Gruppe D_{4h} in der Darstellung $T_{2g}(O_h)$ enthalten sind.

D _{4h}	E	2 <i>C</i> 4	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σħ	2σ _v	$2\sigma_d$	
A_{1g}	1	1	1	1	1	1	1	1	1	1	Γ_1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	Γ_2
A_{2u}	1	1	1	<u>1</u>	-1	-1	-1	-1	1	1	
B 1g	1	-1	1	1	-1	1	-1	1	1	-1	Γ_3
B 1 u	1	-1	· 1	1	-1	-1	1	-1	-1	· 1	
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1	Γ_4
B 2 u	1	-1	1	-1	1	-1	1	-1	1	-1	
E_{g}	2	0	-2	0	0	2	0	-2	0	0	Γ_5
E_u	2	· • • •	-2	0	0	-2	0	· 2	0	0	
	E	2C ₄	C ₂	2C'2	2C"	2 i	25	\mathbf{S}_4	$\sigma_{\rm h}$	2σ' _v	$2\sigma_d$
χ=	3	-1	-1	-1	1	3	-]	1 -	-1	-1	1
$n_{A_{1g}} = \frac{1}{16} \left\{ 1 \cdot 1 \cdot 3 + 2 \cdot 1 \cdot (-1) + 1 \cdot 1 \cdot (-1) + 2 \cdot 1 \cdot (-1) + 2 \cdot 1 \cdot 1 \right\}$											
$+1\cdot 1\cdot 3+2\cdot 1\cdot (-1)+1\cdot 1\cdot (-1)+2\cdot 1\cdot (-1)+2\cdot 1\cdot 1\}=0,$											
$n_{A_{1u}} = \frac{1}{16} \{ 1 \cdot 1 \cdot 3 + 2 \cdot 1 \cdot (-1) + 1 \cdot 1 \cdot (-1) + 2 \cdot 1 \cdot (-1) + 2 \cdot 1 \cdot 1 \}$											
-	-1.(-	$-1) \cdot 3$	$+2 \cdot (\cdot$	-1) • (-1)+	-1.(-	-1) • (•	-1)+	$2 \cdot (-$	-1) • (-	-1)
-	-2·(-	_1) · 1]	=0,								

Ergebnis:

In der O_h -Darstellung T_{2g} sind je einmal die irreduziblen Darstellungen B_{2g} und E_g der Gruppe D_{4h} enthalten:

$$T_{2g}(O_h) = B_{2g} (D_{4h}) + E_g (D_{4h})$$

Analog ist mit dem Term $E_g(O_h)$ zu verfahren. Man findet:

$$E_g(O_h) \rightarrow A_{1g}(D_{4h}) + B_{1g}(D_{4h})$$

(s. Korrelationsschemata B.13)

5.5.2 Symmetrieklassifizierung von Molekülorbitalen in tetraedrischen Molekülen

Nur σ -Bindung (z.B. CH₄)

Insgesamt 4 σ -Bindungen: $\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4}$

Aufsuchen der reduziblen Darstellung, für die der Satz $(\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4})$ eine Basis bildet. Mit der Transformationstafel:

X	\hat{R}	$\vec{r_1}$	\vec{r}_2	\vec{r}_3	\vec{r}_4	$\chi(\hat{R})$
	\hat{E}	$\vec{r_1}$	\vec{r}_2	\vec{r}_3	\vec{r}_4	4
	$\hat{C}_3(AB_1)$	$\vec{r_1}$	\vec{r}_4	\vec{r}_2	\vec{r}_3	1
	$\hat{C}_2(x)$	\vec{r}_3	\vec{r}_4	$\vec{r_1}$	\vec{r}_2	0
	$\hat{S}_4(x)$	\vec{r}_4	\vec{r}_1	\vec{r}_2	\vec{r}_3	0
	$\sigma_d(B_1AB_2)$	$\vec{r_1}$	\vec{r}_2	\vec{r}_4	\vec{r}_3	2

In Pfeilrichtung blickend rechts drehen!

Wir finden als (reduzible) Darstellung:

In welche irreduziblen Darstellungen zerfällt $\prod_{tetraedr}$ unter T_d Symmetrie? Wir benötigen dafür die Charakterentafel für T_d :

T _d	\hat{E}	$8\hat{C}_3$	$3\hat{C}_2$	$6\hat{S}_4$	$6\hat{\sigma}_{_d}$
A ₁	1	1	1	1	1
A ₂	1	1	1	-1	-1
E	2	-1	2	0	0
T ₁	3	0	-1	1	-1
T ₂	3	0	-1	-1	1

Mit der Reduktionsformel:

$$n_{\Gamma_{irr.}^{i}} = \frac{1}{h} \sum_{\hat{R}} \chi_{red}(\hat{R}) \chi_{irr.}^{i}(\hat{R})$$

$$\begin{split} \mathbf{n}_{A_1} &= 1/24\;(1\cdot 4\cdot 1 + 8\cdot 1\cdot 1 + 3\cdot 0\cdot 1 + 6\cdot 0\cdot 1 + 6\cdot 2\cdot 1) = 24/24 = 1\\ \mathbf{n}_{A_2} &= 1/24\;(1\cdot 4\cdot 1 + 8\cdot 1\cdot 1 + 3\cdot 0\cdot 1 + 6\cdot 0\cdot (-1) + 6\cdot 2\cdot (-1)) = 0\\ \mathbf{n}_E &= 1/24\;(1\cdot 4\cdot 2 + 8\cdot 1\cdot (-1) + 3\cdot 0\cdot 2 + 6\cdot 0\cdot 0 + 6\cdot 2\cdot 0) = 0\\ \mathbf{n}_{T_1} &= 1/24\;(1\cdot 4\cdot 3 + 8\cdot 1\cdot 0 + 3\cdot 0\cdot (-1) + 6\cdot 0\cdot 1 + 6\cdot 2\cdot (-1)) = 0\\ \mathbf{n}_{T_2} &= 1/24\;(1\cdot 4\cdot 3 + 8\cdot 1\cdot 0 + 3\cdot 0\cdot (-1) + 6\cdot 0\cdot (-1) + 6\cdot 2\cdot 1) = 24/24 = 1 \end{split}$$

Ergebnis:

Die Basis $(\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4})$ transformiert unter T_d-Symmetrie nach den irreduziblen Darstellungen A₁ + T₂.

An den σ -Molekülorbitalen eines tetraedrischen Moleküls sind folgende Atomorbitale des Zentralatoms beteiligt:

Typ A_1 : s

Typ T₂: (p_x, p_y, p_z) , z.B. in CH₄, SiF₄ (d_{xy}, d_{xz}, d_{yz}) , z.B. in ÜM-Komplexen Symmetrieadaptierte Ligandengruppenorbitale (SALC = <u>Symmetry-A</u>dapted <u>Linear</u> <u>C</u>ombinations) zur Erstellung des MO-Diagramms werden entweder "per inspectionem" oder mit Hilfe von Projektionsoperatoren gefunden.

Per inspectionem: A_1 -SALC: muß ebenfall A_1 -Symmetrie haben, d.h.

$$\Phi_1 = \frac{1}{2}(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4)$$

Daraus die MO'e vom A₁-Typ gemäß:

$$\Phi_b^{A_1} = \frac{1}{\sqrt{2}} \left[s + \frac{1}{2} (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) \right]$$

"Bindend"

$$\Phi_{a}^{A_{1}} = \frac{1}{\sqrt{2}} \left[s - \frac{1}{2} (\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4}) \right]$$

"Antibindend"

T₂-SALC:

Für MO mit p_z:
$$\Phi_2 = \frac{1}{2}(\sigma_1 - \sigma_2 - \sigma_3 + \sigma_4)$$

p_x: $\Phi_3 = \frac{1}{2}(\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4)$
p_y: $\Phi_4 = \frac{1}{2}(\sigma_1 + \sigma_2 - \sigma_3 - \sigma_4)$

MO-Diagramm für tetraedrische AB_4 -Moleküle (nur σ -Bindung!)

5.6 Sätze über irreduzible Darstellungen

1) Zu jeder Gruppe gibt es genau so viele (nicht äquivalente) irreduzible Darstellungen, wie die Gruppe Klassen hat.

Beispiele

 T_{d} : 5 Klassen (E, 8C₃, 3C₂, 6S₄, 6 σ_{d})

5 irreduzible Darstellungen (A_1, A_2, E, T_1, T_2)

O_h: 10 Klassen

10 irreduzible Darstellungen

2) Die Quadratsumme der Dimensionen $l_1, l_2, ..., l_r$ der nicht äquivalenten irreduziblen Darstellungen $\mathbb{I}_1, \mathbb{I}_2, ..., \mathbb{I}_r$ einer Gruppe ist gleich der Ordnung h der Gruppe:

$$\sum_{i=1}^{r} l_i^2 = h$$

Beispiel: T_d

 T_d mit h = 24 und den irreduziblen Darstellungen A₁ (l₁ = 1), A₂ (l₂ = 1), E (l₃ = 2), T₁ (l₄ = 3) und T₂ (l₅ = 3):

$$\sum l_i^2 = 1 + 1 + 4 + 9 + 9 = 24 = h$$

3) Die Summe der quadrierten Charaktere einer jeden irreduziblen Darstellung für alle Symmetrieoperationen ist gleich der Ordnung h der Gruppe.

Beispiel: T_d A_1 : $1 \cdot 1^2 + 8 \cdot 1^2 + 3 \cdot 1^2 + 6 \cdot 1^2 + 6 \cdot 1^2 = 24$ \vdots E: $1 \cdot 2^2 + 8 \cdot (-1)^2 + 3 \cdot 2^2 + 6 \cdot (0)^2 + 6 \cdot (0)^2 = 24$ \vdots T_2 : $1 \cdot 3^2 + 8 \cdot (0)^2 + 3 \cdot (-1)^2 + 6 \cdot (-1)^2 + 6 \cdot 1^2 = 24$ 4) Die "Vektoren", deren Komponenten die Charaktere zweier verschiedener irreduzibler Darstellungen sind, sind orthogonal:

$$\sum_{\hat{R}} \chi_{\mathbb{I}}(\hat{R}) \chi_{\mathbb{I}}(\hat{R}) = 0 \text{ für } i \neq j$$

Beispiel: T_d

T _d	\hat{E}	$8\hat{C}_3$	$3\hat{C}_2$	$6\hat{S}_4$	$6\hat{\sigma}_{_d}$
A ₁	1	1	1	1	1
A ₂	1	1	1	-1	-1
E	2	-1	2	0	0
T ₁	3	0	-1	1	-1
T_2	3	0	-1	-1	1

 $E \perp T_2: 1 \cdot 2 \cdot 3 + 8 \cdot (-1) \cdot 0 + 3 \cdot 2 \cdot (-1) + 6 \cdot 0 \cdot (-1) + 6 \cdot 0 \cdot 1 = 0$

5.7 Molekülorbitaltheorie für H₂O-Molekül; Projektionsoperator

1. Schritt:

Basisfunktionen: O: (1s), (2s), $2p_x$, $2p_y$, $2p_z$ H₁: 1s₁ H₂: 1s₂

2. Schritt:

Transformationseigenschaften der Basisfunktionen unter den 4 Symmetrieoperationen der Gruppe C_{2v}: Ê, Ĉ₂, ô_v, ô_v'
1s und 2s sind invariant, gehören demnach zur (totalsymmetrischen) irreduziblen Darstellung A₁.

Die übrigen 5 Basisfunktionen bilden einen Minimalsatz, der 5-dimensionale Transformationsmatrizen, und damit eine 5-dimensionale Darstellung, für die in C_{2v} vorkommenden Symmetrieoperationen erzeugt. z.B.

$$\hat{E}\Psi = (2p_x, 2p_y, 2p_z, 1s_1, 1s_2) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\hat{C}_{2}\Psi = (2p_{x}, 2p_{y}, 2p_{z}, 1s_{1}, 1s_{2}) \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\hat{\sigma}_{v}\Psi = (2p_{x}, 2p_{y}, 2p_{z}, 1s_{1}, 1s_{2}) \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\hat{\sigma}_{v} \Psi = (2p_{x}, 2p_{y}, 2p_{z}, 1s_{1}, 1s_{2}) \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Die Transformationsmatrizen und das Charakterensystem der 5-dimensionalen Darstellung lassen sich mit Hilfe der **Transformationstafel** schnell auffinden:

Charakterensystem = 5-dimensionale Darstellung \blacksquare

3. Schritt Ausreduzierung der 5-dimensionalen Darstellung \mathbb{I} mit Hilfe der Reduktionsformel

$$n_{\mathbb{I}} = \frac{1}{h} \sum_{\hat{R}} \chi_{\mathbb{I}}(\hat{R}) \chi_{\mathbb{I}}(\hat{R})$$

und der Charakterentafel für die Gruppe C_{2v} :

C_{2v}	\hat{E}	\hat{C}_2	$\hat{\sigma}_{_{v}}$	$\hat{\sigma}_{_{v}}$ '
A ₁	1	1	1	1
A ₂	1	1	-1	-1
B ₁	1	-1	1	-1
B ₂	1	-1	-1	1

n _{A1} :	$\frac{1}{4}[1 \cdot 1 \cdot 5 + 1 \cdot 1 \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot 1 \cdot 1] = 2$
n_{A_2} :	$\frac{1}{4}[1 \cdot 1 \cdot 5 + 1 \cdot 1 \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot (-1) \cdot 1] = 0$
n_{B_1} :	$\frac{1}{4}[1 \cdot 1 \cdot 5 + 1 \cdot (-1) \cdot (-1) + 1 \cdot 1 \cdot 3 + 1 \cdot (-1) \cdot 1] = 2$
n_{B_2} :	$\frac{1}{4}[1 \cdot 1 \cdot 5 + 1 \cdot (-1) \cdot (-1) + 1 \cdot (-1) \cdot 3 + 1 \cdot 1 \cdot 1] = 1$

Also: $\mathbb{I} \to 2A_1 \div 2B_1 \div B_2$

Demnach sind die im 5-dimensionalen Basissatz enthaltenen Funktionen von den Symmetrietypen a_1 , b_1 und b_2 . Nur Atomfunktionen vom gleichen Symmetrietyp können zu Molekülorbitalen kombiniert werden.

4. Schritt

Klassifizierung der Basisfunktionen nach ihren Symmetrieeigenschaften (→ Symmetrieorbitale) unter Verwendung von Projektionsoperatoren.

Definition des Charakterenprojektionsoperators \hat{Q}^{α}

$$\hat{Q}^{\alpha} = \frac{f^{\alpha}}{h} \sum_{\hat{R}} \chi^{\alpha}(\hat{R}) \, \hat{R}^{-1}$$

- f^{α} : Dimension der irreduziblen Darstellung \prod^{α}
- h: Ordnung der Gruppe
- $\chi^{\alpha}(\hat{\mathbf{R}})$: Charakter der irreduziblen Darstellung \mathbb{I}^{α} zur Symmetrieoperation $\hat{\mathbf{R}}$
 - $\hat{\mathbf{R}}^{-1}$: Inverse Operation zur Symmetrieoperation $\hat{\mathbf{R}}$

Damit lauten die hier vorkommenden Projektionsoperatoren:

$$\hat{Q}^{A_{1}} = \frac{1}{4} \begin{bmatrix} \hat{E} + \hat{C}_{2} + \hat{\sigma}_{v} + \hat{\sigma}_{v}' \end{bmatrix}$$

$$\hat{Q}^{A_{1}} = \frac{1}{4} \begin{bmatrix} \hat{E} - \hat{C}_{2} + \hat{\sigma}_{v} - \hat{\sigma}_{v}' \end{bmatrix}$$

$$\hat{Q}^{B_{1}} = \frac{1}{4} \begin{bmatrix} \hat{E} - \hat{C}_{2} + \hat{\sigma}_{v} - \hat{\sigma}_{v}' \end{bmatrix}$$

$$b_{1}$$

$$\hat{Q}^{B_{2}} = \frac{1}{4} \begin{bmatrix} \hat{E} - \hat{C}_{2} - \hat{\sigma}_{v} + \hat{\sigma}_{v}' \end{bmatrix}$$

$$b_{2}$$

Anwendung dieser Projektionsoperatoren auf alle im Basissatz vorkommenden Funktionen (Orbitale) (s. Transformationstafel):

z.B.

$$\hat{Q}^{A_{1}} | p_{x} \rangle = \frac{1}{4} [p_{x} - p_{x} + p_{y} - p_{y}] = 0$$

$$\hat{Q}^{A_{1}} | p_{y} \rangle = \frac{1}{4} [p_{y} - p_{y} + p_{x} - p_{x}] = 0$$

d.h. $|p_x\rangle$ und $|p_y\rangle$ sind keine Orbitale vom Typ a_1 .

$$\hat{Q}^{A_1} | p_z \rangle = \frac{1}{4} [p_z + p_z + p_z + p_z] = | p_z \rangle$$

d.h. $|p_z\rangle$ ist eine Funktion vom Typ a_1 .

$$\hat{Q}^{A_{1}} | s_{1} \rangle = \hat{Q}^{A_{1}} | s_{2} \rangle = \frac{1}{4} [s_{1} + s_{2} + s_{1} + s_{2}] = \frac{1}{2} | s_{1} + s_{2} \rangle$$

d.h. auch $\frac{1}{2} | s_{1} + s_{2} \rangle$ ist eine Funktion vom Typ a_{1} .

Analog findet man die Symmetrieorbitale (noch nicht normiert!):

	vom Typ
$\Phi_1 = 1s$	a ₁
$\Phi_2 = 2s$	a ₁
$\Phi_3 = N_3(s_1 + s_2)$	a ₁
$\Phi_4 = N_4(s_1 - s_2)$	b ₁
$\Phi_5 = 2p_z$	a ₁
$\Phi_6 = N_6(2p_x + 2p_y)$	b ₁
$\Phi_7 = N_7 (2p_x - 2p_y)$	b ₂

5. Schritt

Linearkombination von Symmetrieorbitalen gleichen Typs zu Symmetrie-adaptierten Molekülorbitalen

 $(\rightarrow \text{SALCAO }\underline{S}\text{ymmetry }\underline{A}\text{dapted }\underline{L}\text{inear }\underline{C}\text{ombination of }\underline{A}\text{tomic }\underline{O}\text{rbitals})$

a₁:
$$\Psi_k^{a_1} = c_{1k} \Phi_1 + c_{2k} \Phi_2 + c_{3k} \Phi_3 + c_{5k} \Phi_5$$
 $k = 1, 2, 3, 4$
b₁: $\Psi_k^{b_1} = c_{4k} \Phi_4 + c_{6k} \Phi_6$ $k = 5, 6$

 $b_2: \Psi_7^{b_2} = \Phi_7$

Ziel:

Die Energieberechnung mit der ursprünglichen (7×7) -Säkulardeterminante (mit 7 Basisfunktionen) ist mit Symmetrieanalyse zurückgeführt auf die Berechnung je einer (4×4) -, (2×2) - und (1×1) -Determinanten.

6. Mössbauer-Spektroskopie

6.1 Prinzip6.2 Hyperfeinwechselwirkungen6.3 Anwendungen

Rudolf L. Mössbauer Nobel-Preis 1961

Rückstoßfreie Kernresonanzabsorption von y-Strahlen

Zwei Stimmgabeln in Resonanz

Statt Stimmgabeln: Atome

R.L. Mössbauer : Rückstoßfreie Kernresonanz-
(1958)absorption von γ-Strahlung

Kernzerfall von ⁵⁷Co (für ⁵⁷Fe Mössbauer-Resonanz)

Experimentelle Resonanzbedingungen

Übergangsenergie: $E_{\gamma} = E_a - E_g$

Geeignet: 5 keV $\leq E_{\gamma} \leq 180$ keV

Wenn $E_{\gamma} \leq 5$ keV:Totale nicht-resonante Absorption der
 γ -Strahlen in Quelle bzw. Absorber

Wenn $E_{\gamma} \ge 180$ keV: Rückstoß-Energie $E_R = E_{\gamma}^2/2mc^2$ wird zu groß und zerstört die Resonanz.

$\begin{array}{l} \mbox{Mittlere Lebensdauer}\\ \mbox{des angeregten Kernzustands}\\ \mbox{Geeignet: } 10^{-6} \ s \geq \tau_{\rm N} \geq 10^{-11} \ s \end{array}$

Die mittlere Lebensdauer τ_N bestimmt die Resonanzlinienbreite gemäß der **Heisenbergschen Unschärfe-Relation**: $\Gamma \cdot \tau_N = \hbar$. (Die mittlere Lebensdauer τ_N ist mit der Halbwertzeit $t_{1/2}$ korreliert: $\tau_N = \ln 2 \cdot t_{1/2}$).

Mössbauer-aktive Elemente

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw

Resonanzschärfe Γ/E_{γ} beim Mössbauer-Effekt mit der Übergangsenergie E_{γ} Beispiel: ⁵⁷Fe mit $E_{\gamma} = 14\ 400\ eV$

 $\tau_{\rm N} = 1.4 \cdot 10^{-7} \, {\rm s} \ \longrightarrow \Gamma = \hbar/\tau_{\rm N} = 4.7 \cdot 10^{-9} \, {\rm eV}$

 $\Gamma/E_{\gamma} = 4.7 \cdot 10^{-9} \text{ eV}/14 \ 400 \text{ eV} = 3,26 \cdot 10^{-13}$ (Optische Übergänge: $\Gamma/E \sim 10^{-8}$)

Rückstoß-Effekt

Bei Emission und Absorption von γ -Quanten mit der Energie E_{γ} erleidet ein **freies atom oder Molekül** (Gas, Flüssigkeit) mit der Masse **m** einen Rückstoß mit der Energie E_R :

$$E_R = E_{\gamma}^2/2mc^2$$

der um 5-6 Größenordnungen größer ist als die natürliche Linienbreite Γ \rightarrow <u>Keine Resonanz möglich.</u>

Rückstoß-Effekt

Im Festkörper (z.B. Kristall)

Verteilt sich die Rückstoßenergie gemäß

 $\mathbf{E}_{\mathbf{R}} = \mathbf{E}_{\mathbf{transl}} + \mathbf{E}_{\mathbf{vib}}$

 $\mathbf{E}_{\mathbf{transl}}$: Auf den ganzen Kristall der Masse M übertragener linearer Impuls . $\mathbf{E}_{\mathbf{transl}} << \Gamma$, since M >>m.

 E_{vib} : wird in Anregung von Gitterschwingungen umgesetzt. E_{vib} ist quantisiert. \square Einstein-Modell, Debye-Modell:

Mit der Wahrscheinlichkeit f, Lamb-Mössbauer-Faktor (Debye-Waller-Faktor) genannt, bleibt das quantenmechanische Phononensystem bei Emission und Absorption von γ -Quanten unverändert (*zero phonon processes*). Nur dieser Anteil f ist für die Kernresoanzabsorption nutzbar. \rightarrow <u>Mössbauer-Effekt.</u>

Lamb-Mössbauer-Faktor (Debye-Waller-Faktor)

Mit f bezeichnet man den Anteil an γ -Quanten, der *rückstoßfrei* emittiert und absorbiert wird.

Der Parameter f ist mit Schwingungseigenschaften des Kristallgitters korreliert:

$$f = \exp \{(\langle x^2 \rangle / \lambda^2)(2\pi)^2\} = \exp \{(2\pi)^2 E_{\gamma}^2 \langle x^2 \rangle / (hc)^2\}$$

<x²>: mittleres Quadrat der Schwingungsaplitude in x-Richtung λ : Wellenlänge der γ -Strahlung, wobei $E_{\gamma} = hv = h \cdot c/\lambda$.

Mössbauer Experiment

Mössbauer Experiment

Quelle und Absorber werden relativ zu einander bewegt mit der **Doppler-Geschwindigkeit** $\mathbf{v} = \mathbf{c} (\Gamma_0 / \mathbf{E}_{\gamma})$

 57 Fe : $\Gamma_0 = 4.7 \cdot 10^{-9}$ eV, $E_{\gamma} = 14400$ eV, v = 0.096 mm s⁻¹

Schematischer Aufbau eines Mössbauer-Spektrometers

Mössbauer-Spektrum

Mössbauer-Spektrometer

Mössbauer-Labor Mainz

Hyperfein-Wechselwirkungen zwischen Atomkern und Elektronen und Mössbauer-Parameter

- Electrische Monopol-Wechselwirkung
 ⇒ "Isomerie-Verschiebung" δ
- Elektrische Quadrupol-Wechselwirkung

 \Rightarrow "Quadrupol-Aufspaltung" ΔE_{O}

• Magnetische Dipol-Wechselwirkung \Rightarrow , Magnetische Aufspaltung" ΔE_M

Bedingungen für Hyperfeinwechselwirkungen

Art der Wechselwir- kung	Kern- Bedingung	Elektronische Bedingung	Konsequenz
Elektr. Monopol- Wechselw.	$R_a^2 \neq R_g^2$	$ \Psi(0) _{A}^{2} \neq \Psi(0) _{S}^{2}$	Unterschiedliche Verschiebg. der Kernenergienivieaus → Isomer shift δ
Elektr. Quadrupol- Wechselw.	Elektr. Quadrupol- moment $eQ \neq 0$ $(I > \frac{1}{2})$	EFG ≠ 0	Kernenergieniveaus spalten auf in I + $\frac{1}{2}$ Subniveaus I, $\pm m_I > (zweifach entartet)$ \rightarrow Quadrupol- Aufspaltung ΔE_Q
Magnetische Dipol- Wechselw.	Magn. Dipol- moment $\mu \neq 0$ (I > 0)	H ≠ 0	Kernniveaus $ I > spalten auf$ in 2I+1 Niveaus $ I, m_I > mit$ $m_I = +I, +I-1,, -I$ \rightarrow Magnet. Dipol- Aufspaltung ΔE_M

Elektrische Monopol-Wechselwirkung Isomerie-Verschiebung δ

Kernradius Elektronendichte $\frac{\mathbf{R}_{\mathbf{e}} \neq \mathbf{R}_{\mathbf{g}}}{\mathbf{\rho}_{\mathbf{S}} \neq \mathbf{\rho}_{\mathbf{A}}}$

Oxidationszustand Spinzustand Bindungseigenschaften Elektronegativität

$$\Delta E(S) = E_{S} - E_{0} = C |\Psi(0)|_{S}^{2} (R_{e}^{2} - R_{g}^{2}), \quad C = \frac{2}{3}\pi Ze^{2}$$

$$\Delta E(A) = E_{A} - E_{0} = C |\Psi(0)|_{A}^{2} (R_{e}^{2} - R_{g}^{2})$$

$$\delta = \Delta E(A) - \Delta E(S) = E_{A} - E_{S}$$

$$\delta = C \{|\Psi(0)|_{A}^{2} - |\Psi(0)|_{S}^{2}\}(R_{e}^{2} - R_{g}^{2})$$

Für unveränderte Quelle: $|\Psi(0)|_{S}^{2} = \text{const}$

 $\implies \delta = C^{*} \{ |\Psi(0)|_{A}^{2} \} (R_{e}^{2} - R_{g}^{2})$

Merke:
Für ⁵⁷Fe :
$$(R_e^2 - R_g^2) < 0$$

Isomerieverschiebung δ von Eisenverbindungen

$$\delta = C \{ |\Psi(0)|_{A}^{2} - |\Psi(0)|_{S}^{2} \} (R_{e}^{2} - R_{g}^{2})$$

Für ⁵⁷Fe :
$$(R_e^2 - R_g^2) < 0$$

Isomerieverschiebung von Goldverbindungen: ¹⁹⁷Au-Mössbauer-Spektroskopie

Au: [Xe]4f¹⁴5d¹⁰6s¹ Au(I): 5d¹⁰ Au(III): 5d⁸ Au(V): 5d⁶

¹⁹⁷Au : $(\mathbf{R}_{e}^{2} - \mathbf{R}_{g}^{2}) > 0$

Isomerieverschiebung von Iridiumverbindungen: ¹⁹³Ir-Mössbauer Spectroskopie

¹⁹³Ir:
$$(R_e^2 - R_g^2) > 0$$

(F. Wagner et al.)

Elektrische Quadrupol-Wechselwirkung Quadrupol-Aufspaltung ∆E₀

 $\Delta E_Q \sim eQ \cdot \overrightarrow{VE}$

Oxidations-, Spinzustand, Symmetrie

FeSO₄•7H₂O [Fe(H₂O)₆]²⁺ Fe(II)-HS, S=2

K₄[Fe(CN)₆] Fe(II)-LS, S=0 cubic

Na₂[Fe(CN)₅NO] Fe(II)-LS, S=0 tetragonal

Magnetische Dipol-Wechselwirkung Magnetische Aufspaltung ΔE_M

$E_M(m_I) = -\mu Hm_I/I$

Ferro-, Antiferro-, Ferri -Magnetismus Anwendungen der Mössbauer-Spektroskopie in Chemie und Materialforschung Thermisch und optisch schaltbare Komplexverbindungen von Eisen(II)

Eisen(II), 3d⁶

3d-Orbitale 1

S = **0** "Low Spin" diamagn.

Spinübergang (Spin Crossover)

[Fe^{II}(phen)₃]X₂

"Tuning" the Ligand Field by Ligand Replacement

[Fe^{II}(phen)₂(NCS)₂]

$[Fe(ptz)_6](BF_4)_2$

v (**mm**/**s**)

$[Fe(ptz)_6](BF_4)_2$

300 K

80 K

10 K Green Light

[Fe(ptz)₆](BF₄)₂: Light-Induced SCO

Light-Induced Excited Spin State Trapping

"LIESST"

$[Fe(mtz)_6](BF_4)_2$ mtz = 1-methyl-1H-tetrazole

The crystal structure of [Fe(mtz)](BF) shows that iron(II) ions occupy two slightly different lattice positions, denoted as A and B sites, at $\frac{1}{4}$ ratio of 1:1. At room temperature the two kinds of Fe(II) ions are in the HS state as confirmed by Mössbauer spectroscopy.

$[Fe(mtz)_6](BF_4)_2$

T-dependent ⁵⁷Fe Mössbauer spectra

Poganiuch, Decurtins, Gütlich

$[Fe(mtz)_6](BF_4)_2$ LIESST in Sites A and B

$\lambda = 514 \text{ nm}$ $\lambda = 820 \text{ nm}$

 $\begin{array}{c} 65 \text{ K} \\ \text{HS} \rightarrow \text{LS} \\ \text{A} \end{array} \qquad \begin{array}{c} 65 \text{ K} \\ \text{LS} \rightarrow \text{HS} \\ \text{B} \end{array}$

 $\lambda = 514 \text{ nm}$

Reverse-LIESST

Tetranuclear Iron(II) Complexes

⁵⁷Fe-Mössbauer-Spektren von Korrosions-Produkten

$\begin{array}{c} Corrosion \ of \ \alpha-Iron \\ in \ H_2O/SO_2 \ atmosphere \\ at \ 300 \ K \end{array}$

Corrosion product is β-FeOOH

Lacquer Coating Against Corrosion of Steel

A, B : Different lacquers, Same corrosion conditions

Corrosion Products in Cooling Systems of Power Plants

⁵⁷Fe-Mössbauer-Spektrum einer1 US Dollar-Note

Bestandteile	Anteil-%
Magnetit, Fe ₃ O ₄	20
Goethit, a-FeOOH	[80

⁵⁷Fe-Mössbauer-Spektrum vom 100 DM-Schein

⁵⁷Fe-Mössbauer-Spektrum eines50 Euro-Scheins

Constituents	area-/%
a Iron	48
Magnetite	36
doublet	16

MIMOS UNÍVET SITAT® INAINZ

Miniaturisiertes Mössbauer-Spektrometer

Panorama-Kamera —— Mini-Infrarot-Spektrometer

Roboterarm-Manipulator Mikroskop-Kamera Alpha-Teilchen-Röntgenspektrometer Mößbauer-Spektrometer Bohr- und Schleifmaschine

Gefahrerkennungskamera <u>Magnete:</u> <u>Analyse von</u> <u>magnet. Staub</u>

Antennen

First Mössbauer Spectrum Recorded on Martian Surface Gusev Crater, January 17, 2004 (3h25min)

The "Berry Bowl"

Black spherules (ca. 5 mm diameter), looking like blueberries, spread out in a rocky outcrop are analysed with MIMOS, 46 and 48 Mars days after landing.

The blueberry-spherules show a high concentration of hematite, much higher than the berry-free rock.

Mößbauer-Spektrum von *El Capitan* in *Meridiani Planum* Jarosit: (K, Na, X⁺)Fe₃(SO₄)₂(OH)₆

Reprint Series Science Vol. 305 No. 5685 Pages 737-900 \$10

"Mineralogy at Gusey Crater from Spirit's Mössbauer Spectrometer "

Pages 1633-1844 \$10

Jarosite and Hematite at Meridiani Planum from **Opportunity's** Mössbauer Spectrometer"

Opportunity at Meridiani Planum

Lekythos 500 b. C.

Röm.-germ. Zentralmuseum Mainz

20 m m

Restoration of a Roman Mask

